General potentials
let's consider a periodic potential $U(x)$ with periodicity a such that $U(x)=U(x+a)$.
Any function invariant under a translation gwen by $\vec{T}=\mu \bar{a}_{1}+\nu \vec{a}_{2}+\lambda \vec{a}_{3}$, can be writhen in terms of a Fourier sieries

$$
U(x)=\sum_{G} U_{G} e^{i G x}
$$

The values UG decrease rapidly as $|G| \gg 1$ For a bare Coulomb potential by decreases as $1 / G^{2}$
As we want the potential to be real-valued

$$
\begin{aligned}
U(x) & =\sum_{G>0} U_{G}\left(e^{i G x}+e^{-i G x}\right) \\
& =2 \sum_{G>0} U_{G} \cos (G x)
\end{aligned}
$$

for convemence, we assume that $v_{0}=0$ and that $U(x)$ is symmetric around $x=0$

The schrodinger Eg. in this case becomes

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right] \psi(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+2 \sum_{a>0} U_{G} \cos (G x)\right] \psi(x)=E \psi(x)
$$

The wt can also be written as a fourier series

$$
\psi(x)=\sum_{k} c_{k} e^{i k x}
$$

$k$ : the allowed values of the wave vector obtained the PBC method

That means that $k=\frac{2 \pi n}{L} \quad n \in \mathbb{Z}$
$n$ can be positwe and vegatice
$L$ is the leneght of the crystal
we cannot assume, and in general it is not true, that $\psi(x)$ has the periodicity of the $v(x)$. It has its own periodic properties dictated by Bloch theorem.
we can label the wi $\psi(x)$ which contains the wavector $k$ as $\psi_{k} \rightarrow$ bot we could also label it $\psi_{k+6 ., ~ b e c a u s e ~ i f ~} k$ enters the Fourier series, so does $k+G$.

To solve Schrodinger Eg. we replace our WF:

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \sum_{k}^{1} c_{k} e^{i k x}=\frac{\hbar^{2}}{2 m} \sum_{k} k^{2} c_{k} e^{i k x} \\
& \begin{aligned}
& U(x) \psi(x)=\left(\sum_{G} U_{G} e^{i G x}\right)\left(\sum_{k} c_{k} e^{i k x}\right) \\
&=\sum_{G} \sum_{k} U_{G} c_{k} e^{i(k+G) x} \\
& \sum_{k} \frac{\hbar^{2} k^{2}}{2 m} c_{k} e^{i k x}+\sum_{k} \sum_{G} U_{G} c_{k} e^{i(k+G) x}=\sum_{k} E c_{k} e^{i k x} \\
& \sum_{k} \frac{\hbar^{2} k^{2}}{2 m} c_{k} e^{i k x}+\sum_{k} \sum_{G} U_{G} c_{k} e^{i(k+G) x}-\sum_{k} E c_{k} e^{i k x}=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k}^{1}\left[\frac{k^{2} k^{2}}{2 m} C_{k} e^{i k x}+\sum_{G}^{1} U_{G} C_{k} e^{i(k+G) x}-E C_{k} e^{i k x}\right]=0 \\
& \sum_{k}\left[\left(\frac{k^{2} k^{2}}{2 m}-E\right) C_{k} e^{i k x}+\sum_{G}^{1} U_{G} C_{k-G} e^{i k x}\right]=0 \\
& \sum_{k}\left[\left(\frac{k^{2} k^{2}}{2 m}-E\right) C_{k}+\sum_{G} U_{G} C_{k-G}\right]=0
\end{aligned}
$$

we heed the []$=0$ for each $k$.

$$
\left(\frac{\hbar^{2} k^{2}}{2 m}-E\right) C_{k}+\sum_{G} U_{G} C_{k-G}=0
$$

This is known as the "Central equation" The problem here is to find the coefficients $c_{k}$ Once we determine $c_{k}$, the WI becomes

$$
\psi_{k}(x)=\sum_{G}^{1} C_{k-G} e^{i(k-G) x}
$$

which can be rearranged

$$
\begin{aligned}
u_{k}(x) & =\sum_{G}^{1} c_{k-G} e^{-i G x} e^{i k x} \\
& =\left(\sum_{G} c_{k-G} e^{-i G x}\right) e^{i k x} \\
& =u_{k}(x) e^{i k x} \text { with } u_{k}(x)=\sum_{G}^{1} c_{k-c_{0}} e^{-i G x}
\end{aligned}
$$

Because $U_{k}(x)$ is a fourier series over the reuprocal space, it is invariant under a
crystal lattice translation $T$, when modes

$$
u_{k}(x)=u_{k}(x+T)
$$

we can verify:

$$
\begin{aligned}
u_{k}(x+T) & =\sum_{G} C_{k-G} e^{-i G(x+T)}=\sum_{G} C_{k-G} e^{-i G x} e^{-i G T} \\
& =u_{k}(x) e^{-i G T} \quad \text { by construction } \bar{G} \cdot \bar{T}=2 \pi \mu \\
& =u_{k}(x)
\end{aligned}
$$

This is an altenatwe and also exact proof of Bloch theorem.
solution do the central equation

$$
\left(\frac{\hbar^{2} k^{2}}{2 m}-E\right) C_{k}+\sum_{G} U_{G} C_{k-G}=0
$$

This is a set of equations connected through the coefficients $C_{k-G \text {. It is a set because }}$ there are as many eguartions as there are coefficients.

Let there be $g$ the shortest vale that bis can take. Lets assume that we have a potential

$$
u(x)=u_{g} e^{i g x}+u_{-g} e^{-i g x}
$$

Let's also assume that $u g=U-g=U$

$$
U(x)=2 U \cos (g x)
$$

Let's define $\lambda_{k}=\frac{\hbar^{2} k^{2}}{2 m}$

$$
\begin{aligned}
& \left(\lambda_{k}-E\right) C_{k}+\sum_{G} U_{G} C_{k-G}=0 \\
& \left(\lambda_{k}-E\right) C_{k}+U\left(C_{k-g}+C_{k}+g\right)=0 \\
& \left(\lambda_{k-g}-E\right) C_{k-g}+U\left(C_{k-2 g}+C_{k}\right)=0 \\
& \left(\lambda_{k+g}-E\right) C_{k+g}+U\left(C_{k}+C_{k+2 g}\right)=0 \\
& \left(\lambda_{k-2 g}-E\right) C_{k-2 g}+U\left(C_{k-3 g}+C_{k-g}\right)=0 \\
& \left(\lambda_{k+2 g}-E\right) C_{k+2 g}+U\left(C_{k}+g+C_{k+3 g}\right)=0
\end{aligned}
$$

Although the coefficients are infinite, each of them is may connected to two other coefficients. we can write a matrix with the coefficients:


The equation that we have is $M \vec{C}=0$
The solution to this system is obtained when $\operatorname{det}(M)=0$. This gelds a set of Enc (are the eigenvalues of the matrix), where $n$ : labels the energies and $k$-labels the coefficients. Ck.

