Density of states in 1-dimension Let's consider a chair of particles in in. $N+1$ particles, separated by a distance a_{p} in such a way that the chain has length L
\rightarrow The partides at $s=0$ and $s=N$ at the extremes of the chain/line are fixed.
\rightarrow Each normal mode of polarization p has the form of a standing wave
If the amplitude of the oscillation of the $s^{\text {th }}$ partule is u_{s}

$$
u_{s}=u e^{-i \omega_{r_{p p}} t} \sin (8 k a)
$$

$\omega_{k, p}$ is related through k to the dispersion relation.
To force the ampliturke at $s=0$ and $s=N$ to be zero we choose

$$
k=\frac{n \pi}{L} \quad n \in \mathbb{Z}
$$

$\operatorname{Sin}(\operatorname{ska})=\operatorname{Sin}\left(\frac{\sin \pi}{L} a\right)$ at $n=N \quad \operatorname{Sin}\left(\operatorname{si\pi } \frac{N a}{L}\right)$

If $n=N$, we have $U_{s}=0$ for all particles

$$
K=\frac{\pi}{L}, \frac{2 \pi}{L}, \frac{3 \pi}{L}, \cdots, \frac{(N-1) \pi}{L}
$$

A set of $(N-1)$ values of k, which is equal to the number of particles that are allowed to move.
In a one-dimensional line of particles there is on mode for every interval $\Delta k=\frac{\pi}{L}$
The number of modes per unit range k
is $\frac{1}{\Delta k}=\frac{L}{\pi}$ for $k \leqslant \pi / a \quad k=\frac{n_{i}}{L}=\frac{\pi}{a}$

- for $k>\pi / a$
other ways of counting are equally valid.
We can also consider a case where the line is not bounded, but we require the solutions to be periodic over the distance L.

$$
u_{s}(s a)=u_{s}(s a+L)
$$

This method is referred to as the method of periodic boundary conditions
Now we have a travelling wave

$$
u_{s}=u e^{i\left(s k a-w_{k p} t\right)}
$$

For this wave to be periodic we need

$$
\begin{aligned}
& e^{i k s a}=e^{i k(s a t L)}=e^{i k s a} e^{i k L} \Rightarrow 1=e^{i k L} \\
& k L= \pm 2 n \pi \Rightarrow k= \pm \frac{2 n \pi}{L}
\end{aligned}
$$

The valid K-values are $\pm \frac{2 \pi}{L}, \pm \frac{4 \pi}{L}, \pm \frac{6 \pi}{L}, \ldots$

$$
N=8
$$

$K=0$: uniform mode

There are a moles of oscillation
The amplitude of ogallation

$$
1, e^{ \pm \pi S / 4}
$$

$$
u_{s}=u e^{i\left(s k a-w_{k p} t\right)}
$$

$$
k=0 \quad u_{S}=1 u e^{-i \omega t}
$$

$$
\begin{aligned}
L & =8 a \\
k & = \pm \frac{2 \pi}{L}= \pm \frac{2 \pi}{8 a} \\
& = \pm \frac{\pi}{4 a}
\end{aligned}
$$

$$
K= \pm \frac{2 \pi}{L}
$$

$$
u_{s}=e^{-i S t / 4} u e^{-i \omega t}
$$

$$
e^{i s \frac{\pi}{4 a} a}=e^{i s \pi / a}
$$

$$
k= \pm \frac{\Delta \pi}{L}
$$

$$
u_{s}=e^{ \pm s \pi / 2} u e^{-i \omega t}
$$

$$
\begin{array}{ll}
k= \pm \frac{6 \pi}{L} & u_{s}=e^{-3 s \pi / 4} u e^{-i \omega t} \\
k=-\frac{8 \pi}{L} & u_{s}=e^{-i \pi s} u e^{-i \omega t}
\end{array}
$$

We have one solution (for k) per mobile atom but now are have \pm values of k

$$
\begin{aligned}
\Delta k=\frac{2 \pi}{L} \quad-\frac{\pi}{a}<k<\frac{\pi}{a}: & \frac{L}{2 \pi} \left\lvert\, \begin{array}{l}
\text { densitity } \\
\text { if } k \\
\text { values }
\end{array}\right. \\
& \text { otherwise }: 0
\end{aligned}
$$

we need to obtain $D(\omega)$, the number of modes per unit frequency range for a given polarization.

In 1D:

$$
\begin{array}{rlr}
D_{1}(k) d \omega & =\frac{L}{\pi} \frac{d k}{d \omega} d \omega & \frac{d k}{d \omega}=\frac{1}{d \omega / d k}=\frac{1}{\frac{d \omega}{d k}} \\
& =\frac{L}{H} \frac{1}{v_{g}} d \omega & v_{y}=\frac{d \omega}{d k} \text { Related to } \\
\text { the dispersion } \\
\text { relation }
\end{array}
$$

Note that we have a singularity in $D_{1}(\omega)$ whenever the dispersion relation $\omega(k)$ is horizon. tal $\Rightarrow v g=0$
Density of stater in three dimensions
Periodic bound. cons, method N^{3} cells within a cube of side $L_{x} \cdot L_{y} \cdot L_{z}$

$$
e^{i \vec{k} \cdot \vec{r}}=e^{i \vec{k} \cdot(\vec{r}+\vec{L})}
$$

$$
\begin{array}{ll}
N a_{x}=L_{x} & N a_{y}=L_{y} \\
a_{x} \cdot a_{y} \cdot a_{z} & N a_{z}=L_{z} \\
\vec{k}=\left(k_{x}, k_{y}, k_{z}\right) & \stackrel{L}{L}=\left(L_{x}, L_{y}, L_{z}\right) \\
\vec{F}=(x, y, z)
\end{array}
$$

$$
\begin{aligned}
& \bar{k} \cdot \bar{r}=\left(k_{x} x+k_{y} y+k_{z} z\right) \quad \bar{r}+\vec{L}=\left(x+L_{x}, y+L_{y}, z+L_{z}\right) \\
& e^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z}=e^{i k_{x}\left(x+L_{x}\right)} e^{i k_{y}\left(y+L_{y}\right)} e^{i k_{z}\left(z+L_{z}\right)}
\end{aligned}
$$

so that

$$
\begin{aligned}
& K_{x}=0 ; \pm \frac{2 \pi}{L_{x}} ; \pm \frac{4 \pi}{L_{x}} \ldots ;-\frac{N \pi}{L_{x}} \quad N=\text { even number } \\
& K_{y}=0 ; \pm \frac{2 \pi}{L_{y}} ; \pm \frac{4 \pi}{L_{y}} \ldots ;-\frac{N \pi}{L_{y}} \\
& K_{z}=0 ; \pm \frac{2 \pi}{L_{z}} ; \pm \frac{4 \pi}{L_{z}} \ldots ;-\frac{N \pi}{L_{z}}
\end{aligned}
$$

There's $1 \vec{k}$-vector per unit volume $(2 \pi)^{3}$

$$
\frac{(2 \pi)^{3}}{L_{x} L_{y} L_{z}}=\frac{2 \pi}{L_{x}} \cdot \frac{2 \pi}{L_{y}} \cdot \frac{2 \pi}{L_{z}}
$$

The density of x-vectors is $\frac{L_{x} L y L_{z}}{(2 \pi)^{3}}=\frac{V}{(2 \pi)^{3}}$
$V=L_{x} L_{y} L_{z}$: volume
The total number of modes that have wavevercton less than k is given by $\frac{V}{(2 \pi i)^{3}}$ multiplied by the volume of a sphere with radius k.

$$
N=\frac{V}{(2 \pi)^{3}} \frac{4 \pi k^{3}}{3}=\frac{1}{3} \frac{v k^{3}}{2 \pi^{2}}
$$

Therefore, the density of status for each pdarization is

$$
\begin{aligned}
D_{3}(\omega) d \omega & =\frac{\partial N}{\partial \omega} d \omega=\frac{\partial N}{\partial k} \frac{\partial k}{\partial \omega} d \omega \\
& =\frac{v k^{2}}{2 \pi^{2}} \frac{\partial k}{\partial \omega} d \omega \quad \omega(k)
\end{aligned}
$$

