The Harmon osullator
Potential is quadratic

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$



M: mass of the particle $w$ : natural fregerency of oscillation
$H \psi(x)=E \psi(x)$ : Eigenvalue problem

$$
\begin{aligned}
H=\frac{p^{2}}{2 m}+V(x) & =\frac{(-i \hbar \partial x)^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} \\
& =\frac{1}{2 m}\left[(-i \hbar \partial x)^{2}+m^{2} \omega^{2} x^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 m}\left[(-i \hbar \partial x)^{2}+m^{2} w^{2} x^{2}\right] \psi(x)=E \psi(x) \\
& u^{2}+v^{2}=(u+i v)(u-i v) \quad\left\{\begin{array}{l}
u=-i \hbar \partial x: \text { operator } \\
v=\operatorname{mwx}
\end{array}\right.
\end{aligned}
$$

We define:

$$
\begin{aligned}
& a_{ \pm} \equiv \frac{i}{\sqrt{2 m}}(-\hbar \partial x \pm m \omega x) \text { : these are also } \\
& \text { operators }
\end{aligned} \begin{aligned}
a_{+} a_{-} & =\frac{i}{\sqrt{2 m}}(-\hbar \partial x \\
=\overparen{m \omega x} x) \frac{i}{\sqrt{2 m}}(-\hbar \partial x & \left.-\frac{m \omega x}{}\right) \\
& =\left(\frac{i}{\sqrt{2 m}}\right)^{2}\left(\hbar^{2} \partial_{x}^{2}+\hbar \partial x(m \omega x)-m \omega x \hbar \partial x-m^{2} \omega^{2} x^{2}\right)
\end{aligned}
$$

Operators only have physical meaning when we apply them on wavefunctions

$$
\begin{aligned}
& a+a_{-} \psi(x)= \\
& =\left(\frac{i}{\sqrt{2 m}}\right)^{2}\left(\hbar^{2} \partial x+\hbar \partial x(\operatorname{m\omega } x)-m \omega x \hbar \partial x-m^{2} \omega^{2} x^{2}\right) \psi(x) \\
& =\frac{-1}{2 m}\left(\hbar^{2} \partial_{x}^{2} \psi+\hbar \partial_{x}(m \omega x \psi)-m \omega x \hbar \partial_{x} \psi-m^{2} \omega^{2} x^{2} \psi\right) \\
& =\frac{1}{2 m}\left(-\hbar^{2} \partial x^{2} \psi+m^{2} \omega^{2} x^{2} \psi-\frac{\hbar \partial x(m \omega x \psi)}{\text { apply chain }} \text { vul }+m \omega x \hbar \partial x \psi\right) \\
& \partial_{x}(\operatorname{m\omega } x \psi)=m \omega\left(\partial_{x}(x) \psi+x \partial_{x} \psi\right) \\
& =m \omega \psi+m \omega x \partial_{x} \psi \\
& =\frac{1}{2 m}\left(-\hbar^{2} \partial_{x^{2}}^{2} \psi+m^{2} \omega^{2} x^{2} \psi-\hbar\left(m \omega \psi+m \omega x \partial_{x} \psi\right)+m \omega x \hbar \partial_{x} \psi\right) \\
& =\frac{1}{2 m}\left(-\hbar^{2} \partial^{2} x^{\psi}+m^{2} \omega^{2} x^{2} \psi\right)-\frac{\hbar \omega m}{2 m} \psi \\
& =\frac{1}{2 m}\left(-\hbar^{2} \partial x+m^{2} \omega^{2} x^{2}\right) \psi-\frac{1}{2} \hbar \omega \psi
\end{aligned}
$$

Because this istrue for any WF $\psi$

$$
a_{+} a_{-}=\frac{1}{2 m}\left(-\hbar^{2} \partial^{2} x+m^{2} \omega^{2} x^{2}\right)-\frac{1}{2} \hbar \omega
$$

$=H-\frac{1}{2} \hbar \omega$ the fact that $\partial x$ and $x$ don't commute we have created a new term- $\frac{1}{2}$ th

Follow these steps

$$
a_{-} a_{t}=\frac{1}{2 m}\left(-\hbar^{2} \partial x^{2}+m^{2} \omega^{2} x^{2}\right)+\frac{1}{2} \hbar \omega
$$

The extra two is cossociated to the energy of the vacuum.

$$
\begin{aligned}
a_{-} a_{+} & -a_{+} a_{-}=\frac{1}{2 m}\left(-\hbar^{2} \partial x^{2}+m^{2} \omega^{2} x^{2}\right)+\frac{1}{2} \hbar \omega \\
& -\left(\frac{1}{2 m}\left(-\hbar^{2} \partial^{2}+m^{2} \omega^{2} x^{2}\right)-\frac{1}{2} \hbar \omega\right) \\
& =\hbar \omega
\end{aligned}
$$

These operators don't commute
Commutator of two operators $A$ and $B$ :

$$
\begin{aligned}
& {[A, B]=A B-B A} \\
& {\left[a_{-}, a_{t}\right]=\hbar \omega}
\end{aligned}
$$

Coming back to Schrödinger equation

$$
\text { If } a_{+} a_{-}=H-\frac{1}{2} \hbar \omega \Rightarrow H=a+a_{-}+\frac{1}{2} \hbar \omega
$$

our solution $\psi(x)$ should be such that

$$
\begin{aligned}
& \left(a_{+} a+\frac{1}{2} \hbar \omega\right) \psi=E \psi \\
& \left(a-a_{t}-\frac{1}{2} \hbar \omega\right) \psi=E \psi
\end{aligned}
$$

If $\psi(x)$ is a solution to s.e. with energy $E$ then $\phi=a_{+} \psi$ is also a solution to S.E with energy $E+\hbar \omega$.

$$
\left(a+a-\frac{1}{2} \hbar w\right) \psi=E \psi
$$

Let's see what happens with $\phi=a+\psi$

$$
\begin{aligned}
\left(a_{+} a_{-}+\frac{1}{2} \hbar \omega\right) a_{+} \psi & =\left(a_{+} a-a_{+}+\frac{1}{2} \hbar \omega a_{t}\right) \psi \\
& =a_{+}\left(a-a_{+}+\frac{1}{2} \hbar \omega\right) \psi \\
& =a_{t}\left(a-a_{+}-\frac{1}{2} \hbar \omega+\hbar \omega\right) \psi \\
& =a_{+}\left\{\left(a-a_{+}-\frac{1}{2} \hbar \omega\right) \psi+\hbar \omega \psi\right\} \\
& =a_{+}\{E \psi+\hbar \omega \psi\} \\
& =a_{t}(E+\hbar \omega) \psi \\
\left(a_{+} a+\frac{1}{2} \hbar \omega\right) a_{+} \psi & =(E+\hbar \omega) a_{+} \psi \quad \text { quanta }
\end{aligned}
$$

we have added a lump of energy
$a_{t}$ : commonly culled the creation operator
Check that if $\psi$ is a solution to S.E. with energy $E \Rightarrow a-\psi$ is a solution to S.E. with energy $E-t \omega$.
a-: commonly called the annihilation operator

$$
\begin{aligned}
\psi(x) & \rightarrow E & \\
a+\psi & \rightarrow E+\hbar \omega & a-\psi \rightarrow E-\hbar \omega \\
a+(a+\psi) & \rightarrow E+\hbar \omega+\hbar \omega & a-(a-\psi) \rightarrow E-\hbar \omega-\hbar \omega \\
a_{+}^{2} \psi & =E+2 \hbar \omega & a^{2} \psi \psi=E-2 \hbar \omega \\
\vdots & & \vdots \\
a_{+}^{n} \psi & \rightarrow E+n \hbar \omega & a_{-}^{n} \psi \rightarrow E-n \hbar \omega
\end{aligned}
$$

