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Life should not be a journey to the grave with the intention of
arriving safely in a pretty and well preserved body, but rather
to skid in broadside in a cloud of smoke, thoroughly used up,

totally worn out, and loudly proclaiming “Wow! What a Ride!”

— Hunter S. Thompson

The Universe is made of stories, not of atoms.

— Muriel Rukeyser

Success is a journey, not a destination.
It requires constant effort, vigilance and reevaluation.

— Mark Twain

El ejecutor de una empresa atroz debe imaginar que ya la ha cumplido,
debe imponerse un porvenir que sea irrevocable como el pasado.

— Jorge Luis Borges
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P R E FA C I O

¿Cuándo comenzó todo esto? ¿En qué momento decidí que era esto lo que quería? Seguramente
la decisión la hice con el subconsciente, comenzando a querer hacer un Doctorado sin saber
muy bien todo lo que eso implica. Desde muy joven me atrajeron las matemáticas. Pero las
matemáticas con sentido, aplicadas a cosas de la vida real. Nunca me gustaron las demostra-
ciones que mis colegas del departamento de al lado me pedían hacer durante la carrera. Más de
una noche la pase en vela tratando de demostrar teoremas de álgebra que nunca más me volví
a encontrar. Pero la Física! La Física, el Universo, la Luz. . . estas cosas son hermosas, y parecía
que nunca tenía suficiente de ellas, podía pasarme días y días, y el tiempo se me iba como
arena que se me escurría de entre las manos, y yo con una sonrisa porque estaba haciendo
lo que me gustaba. Así, al final de los cinco años de carrera en Bogotá, lo tenía clarísimo: mi
camino tenía que transcurrir por un Doctorado. No tanto por el hecho de ser Doctor. Siendo de
un país donde “Doctor” es cualquier idiota con un poquito de poder, no hay nada que repudie
más que ese título. Pero veía en hacer un doctorado el paso obligado en la vida académica. Así,
comencé a soñar con Europa, y aunque siempre había pensado que iría a Alemania, terminé en
Madrid. Y es que la vida es eso lo que pasa mientras estás ocupado haciendo planes, ¿no?

Estando “afuera” entendí lo que mis profes muchas veces nos dijeron: para hacer un doctor-
ado, realmente hay que querer hacerlo. Hacer el trabajo y estudiar es fácil. Al fin y al cabo es lo
que nos gusta hacer. Es el ambiente en el que hay que hacer ese trabajo lo que no es sencillo.
Por más reconfortante que fuera el trabajo, hacer el doctorado fue también escoger una vida
solitaria en la que no es sencillo encontrar un lugar al que llamar hogar. En muchas ocaciones
he tenido la sensación de ser el otro, el diferente (que es simplemente una consecuencia de ser
inmigrante) y con el paso del tiempo de dejar de ser de ninguna parte. Ahora soy colombiano
porque eso es lo que dice mi pasaporte, pero ya ni allá siento que encajo. Soy de todas partes,
pero a la vez de ninguna. Este era el precio que había que pagar para obtener la recompensa
académica. A esto es a lo que se referían esos profes. Luego, el asunto es saber si se tiene la
piel lo suficientemente gruesa como para soportarlo y mantener la esperanza de que un día esa
sensación se vaya o que deje de importarte. Todo esto mientras tienes la presión de escribir un
paper. Así, escribir la Tesis es un reto. Al menos así lo fue para mí. Fue el momento en el que
tuve que enfrentarme, tal vez por primera vez y completamente solo, a todas las inseguridades
y preguntas transcendentales que había estado poniendo debajo de la alfombra durante muchos
años. Fue el momento en el que todo el esfuerzo que había hecho para llegar hasta aquí parecía
insignificante a comparación de lo que quedaba por hacer. Tanto así que más de una vez me
pasó por la cabeza dejarlo todo y huir. Pero, ¿a dónde? Seguramente el miedo de no saber la
respuesta a esta última pregunta es más grande que el de enfrentarme a mi mismo, porque aquí
sigo, a las tres de la mañana de un Jueves en Wolverhampton, como bien lo dijera Hemingway,
sangrando estas líneas.

Por supuesto, no todo son tristezas. Tal vez lo que pasa es que son las que más se recuerdan
cuando uno se pone a mirar hacia atrás con nostalgia. Pienso que hacer la Tesis forja el carácter
y quiero pensar que ahora soy una persona más fuerte emocional e intelectualmente. Además,
durante estos años he ido a lugares y he conocido a personas increíbles (al final, ¡todo se trata
de las personas!) por las que no puedo más que agradecer a la Vida por haberlas puesto en mi
camino. Ahora lo que queda es ver quién gana este pulso: si la Tesis o yo. A lo mejor ambos. A
lo mejor ninguno. A lo mejor sucede como decía García Marquez: uno nunca acaba un texto,
uno lo abandona.

Wolverhampton, Octubre de 2019
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son tan grandes como parecen.

Mi familia también tiene mérito—aunque sea por pura proximidad—en que esta tesis se esté
terminando. La alegría con la que me recibían en Colombia cada vez que regresaba me daba un
poco de fuerzas para poder volver a irme y continuar trabajando. Se que a la abuelita Myriam y
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uno de mis sueños. También se que el Nono Demetrio le hubiera dado mucha ilusión leer estos
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A B S T R A C T

english

A two-level system—the idealization of an atom with only two energy levels—is the most
fundamental quantum object. As such, it has long been at the forefront of the research in
Quantum Optics: its emission spectrum is simply a Lorentzian distribution, and the light it
produces is the most quantum that can be. The temporal distribution of the photon emission
displays a perfect antibunching, meaning that such a system will never emit two (or more)
photons simultaneously, which is consistent with the intuition that the two-level system can
only sustain a single excitation at any given time. Although these two properties have been
known for decades, it was not until the advent of the Theory of Frequency-filtered and Time-resolved
Correlations that it was observed that the perfect antibunching is not the end of the story: the
correlations between photons possess an underlying structure, which is unveiled when one
retains the information about the color of the photons. This is a consequence of the Heisenberg
uncertainty principle: measuring perfect antibunching implies an absolute knowledge about
the time at which the photons have been emitted, which in turn implies an absolute uncertainty
on their energy. Thus, keeping some information about the frequency of the emitted photons
affects the correlations between them. This means that a two-level system can be turned into
a versatile source of quantum light, providing light with a large breadth of correlation types
well beyond simply antibunching. Furthermore, when the two-level system is driven coherently
in the so-called Mollow regime (in which the two-level system becomes dressed by the laser
and the emission line is split into three), the correlations blossom: one can find every type
of statistics—from antibunching to superbunching—provided that one measures the photons
emitted at the adequate frequency window of the triplet. In fact, the process of filtering the
emission at the frequencies corresponding to N-photon transitions is the idea behind the
Bundler, a source of light whose emission is always in bundles of exactly N photons.

The versatility of the correlations decking the emitted light motivates the topic of this
Dissertation, in which I focus on the theoretical study of the behaviour that arises when
physical systems are driven with quantum light, i.e., with light that cannot be described through
the classical theory of electromagnetism. As the canon of excitation used in the literature is
restricted to classical sources, namely lasers and thermal reservoirs, our description starts
with the most fundamental objects that can be considered as the optical targets: a harmonic
oscillator (which represents the field for non-interacting bosonic particles) and a two-level
system (which in turn represents the field for fermionic particles). I describe which regions
of the Harmonic oscillator’s Hilbert space can be accessed by driving the harmonic oscillator
with the light emitted by a two-level system, i.e., which quantum steady states can be realized.
Analogously, we find that the quality of the single-photon emission from a two-level system
can be enhanced when it is driven by quantum light. Once the advantages of using quantum,
rather than classical, sources of light are demonstrated with the fundamental optical targets, we
turn to the quantum excitation of more involved systems, such as the strong coupling between
a harmonic oscillator and either a two-level system—whose description is made through the
Jaynes-Cummings model—or a nonlinear harmonic oscillator—which can be realized in systems
of, e.g., exciton-polaritons. Here I find that the statistical versatility of the light emitted by
the Mollow triplet allows to perform Quantum Spectroscopy on these systems, thus gaining
knowledge of its internal structure and dynamics, and in particular to probe their interactions
with the least possible amount of particles: two. In the process of exciting with quantum light,
I am called to further examine the source itself. In fact, there is even the need to revisit the
concept of a single-photon source, for which I propose a more robust criterion than g(2). I also
turn to toy-models of the Bundler so as to use it effectively as an optical source. We can then
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study the advantages that one gets and shortcomings that one faces when using this source of
light to drive all the systems considered on excitation with the emission of a two-level system.

español

El sistema de dos niveles—la idealización de un átomo constituido por solo dos niveles—es el
sistema cuántico más fundamental que existe. Así, ha estado desde siempre en la vanguardia
de la investigación sobre la Óptica Cuántica: su espectro de emisión está dado simplemente
por una distribución Lorentziana, y la luz que produce es tan cuántica como es posible. Los
fotones emitidos por este sistema están perfectamente anti-agrupados (antibunched), lo que
quiere decir que este sistema nunca emitirá más de un fotón simultáneamente, que a la vez es
consistente con el hecho de que el sistema solo puede mantener una excitación en cada instante
de tiempo. Aunque estas dos propiedades son conocidas desde hace décadas, no ha sido sino
hasta la llegada de la Teoría de Correlaciones filtradas en frecuencia y resueltas en tiempo que se
observó que el anti-agrupamiento perfecto no es el final de la historia: las correlaciones entre
los fotones están investidas por una estructura subyacente, que es desvelada cuando se retiene
la información sobre el color de los fotones emitidos. Esto es una consecuencia del principio
de incertidumbre de Heisenberg: medir anti-agrupamiento perfecto implica el conocimiento
absoluto del tiempo en el que los fotones fueron emitidos, lo que a su vez supone la completa
incertidumbre sobre su energía. De esta manera, al obtener un poco de información sobre la
frecuencia en la que los fotones han sido emitidos, uno afecta las correlaciones entre ellos. Esto
significa que un sistema de dos niveles puede convertirse en una versátil fuente de luz cuántica,
capaz de proveer luz con un gran rango de correlaciones, yendo mucho más allá del simple
anti-agrupamiento. Es más, cuando el sistema de dos niveles es excitado coherentemente en el
denominado régimen de Mollow (en el que el sistema de dos niveles es vestido por el laser, y su
línea de emisión se divide en tres), las correlaciones florecen: uno puede encontrar todos los
tipos de estadísticas—desde anti-agrupamiento hasta super-agrupamiento—dado que uno mida
los fotones emitidos a las frecuencias adecuadas del triplete. De hecho, el proceso mediante el
cual se filtra la emisión a las frecuencias que corresponden a transiciones de N fotones es la idea
detrás del Bundler, una fuente de luz cuya emisión siempre ocurre en manojos de N fotones.

La versatilidad de las correlaciones que acompañan a la luz emitida es la motivación para el
tema de esta Disertación, en la que me enfoco en el estudio teórico del comportamiento que
surge cuando sistemas físicos son excitados mediante luz cuántica, i.e., con luz que no puede
ser descrita mediante la teoría clásica del electromagnetismo. Como el canon de excitación
usado en la literatura está restringida a fuentes clásicas, es decir láseres o reservorios térmicos,
nuestra descripción comienza con los objetos más fundamentales que se pueden considerar
como objetivos ópticos: un oscilador armónico (que representa el campo de partículas bosónicas
no interactuantes) y un sistema de dos niveles (que en cambio representa el campo de partículas
fermionicas). Describo cuales son las regiones del espacio de Hilbert del oscilador armónico
que pueden ser accedidas cuando este es excitado por la luz emitida por un sistema de dos
niveles, i.e., qué estados cuánticos se pueden obtener como estados estables. De manera análoga,
encuentro que la calidad de los fotones individuales emitidos por un sistema de dos niveles se
puede mejorar cuando este es excitado mediante luz cuántica. Una vez demostradas las ventajas
de usar luz cuántica, en vez de luz clásica, mediante los objetivos ópticos más fundamentales,
considero la excitación cuántica de sistemas más elaborados, como el acoplo fuerte entre un
oscilador armónico y, o un sistema de dos niveles—cuya descripción se hace mediante el modelo
de Jaynes-Cummings—o un oscilador armónico no lineal—que, por ejemplo, se puede encontrar
en sistemas de polaritones excitónicos. Así, he visto que la versatilidad de la estadística de
la emisión del triplete de Mollow hace posible la implementación de Espectroscopia cuántica
sobre estos sistemas, pudiendo de esta manera obtener información de su estructura interna
y dinámica, y en particular sondear sus interacciones con el menor número de partículas
posible: dos. En el proceso de excitar mediante luz cuántica, he tenido que examinar la fuente
en sí. De hecho, incluso hay necesidad de revisar el concepto de fuente de fotones individuales,
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para el que he propuesto un criterio más robusto que la g(2). También he considerado modelos
sencillos para describir el Bundler para poder usarlo de manera eficaz como fuente óptica. Así,
podemos estudiar las ventajas y desventajas con las que uno se enfrenta al usar esta fuente de
luz para excitar todos los objetivos con un sistema de dos niveles.
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1
P R E L I M I N A R I E S

Out of darkness cometh light

1.1 light

1.1.1 Cosmic & ‘Civilizational’ background

According to the Bible, Light was created right after Heaven and Earth:

1In the beginning God created the heaven and the Earth.
2And the Earth was without form, and void; and darkness was upon the face of the deep.
And the Spirit of God moved upon the face of the Waters.
3And God said, Let there be light: and there was light.
4And God saw the light, and it was good; and God divided the light from the darkness.

From a scientific point of view, the Universe began with the so-called Big Bang. What happened
before is unknown, and Stephen Hawking even said that such a question is futile, as the concept
of time only has physical meaning after the Big Bang. Conversely, what happened after is quite
clear: a tiny fraction of a second after the Bang (approximately 10

*34 s), the Universe started a
process of inflation by which it increased its size over 90 times, going from sub-atomic scales to
the size of a tennis ball almost immediately. After the inflation, the expansion of the Universe
continued, but at a slower rate. During the first three minutes, the temperature reduced from
100 nonillion (1032) to a mere billion (109) Kelvin, and protons and neutrons were able to collide
and stick together to form deuterium, an isotope of Hydrogen. The fusion process generates
gamma radiation (high energy photons), which constitutes the first appearance of light in the
Universe. However, at this point the Universe was so hot, that it was mainly made of a dense
plasma of electrons, protons and neutrons, which scattered light like the fog on a cold night.
About 380 000 years after the Big Bang (which is 13.7716 billion years ago), matter cooled down
enough for the first atoms to form and the plasma gave way to a transparent gas, which let loose
the first flash of light of the Universe. This is the earliest light that we can see. The evidence
of such a burst of light is the so-called Cosmic Microwave Background Radiation, which was first
measured (by accident) by Arno Penzias and Robert Wilson in 1964. Since then, large efforts
from space agencies have made possible to have a full-sky map of this radiation, shown in
Fig. 1.1. The precise understanding of our Universe’s origin and evolution is chiefly thanks
to this relic radiation that has been roaming the universe ever since it let light loose. In the
words of James Peebles, who got awarded half of this year (2019)’s Nobel prize for his work on
explaining this structure: “the 3K thermal cosmic microwave background radiation shows that our
Universe expanded from a hot, dense state, just as fossil bones and footprints show that dinosaurs walked
the face of Earth.”

Figure 1.1: Cosmic background radiation show-
ing the fluctuation in the temperature (shown
in different colors and with a range of ±200�K)
that took place during the lifetime of the Uni-
verse. Image taken from the ESA’s Planck satel-
lite. The understanding of this structure was
awarded half of this year’s Nobel prize.

1
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Figure 1.2: Códice Matritense (Codex of Madrid) recording the birth and death of the moon, according to
the cosmogony of the Aztec civilization (left). Light permeated the indigenous society to such a degree,
that their architecture was filled of symbolism. In the pyramid of Chichen Itza (made by the Mayans), at
the sunset of the Equinox, the stairs that lead to the temple are illuminated by the sun in such a way that
one can identify a serpent crawling down from the temple (right). The pyramid has four staircases, and
each of them has 91 steps. Thus, the sum of all the steps plus the temple on top of the pyramid is equal to
365: the number of days in a solar year.

Of course, these measurements were not the first contact that Humans had with Light.
Ancient communities had a close relation with it, which still dictates our vital cycles. We are
more active during the daylight hours than during night-time (in fact, only about 20% of the
mammals are diurnal), and the cycle of the Earth around the Sun rules the times for planting
and harvesting crops, as well as other agricultural activities. People knew these facts from their
experience, and transmitted them orally, even before the dawn of Science. They also endowed
light with mystical properties. For instance, the Egyptians believed that day and night were
ruled by the act of vision of Ra, the god of the Sun: whenever its eye was open, there was
day, and when its eye was closed, there was night. Various indigenous people on the northern
hemisphere gave different interpretations to the phenomenon of northern lights: the Inuit of
Canada and Greenland, the Saami in Sweden, Finland and Russia, and other tribes in Siberia
believed that the northern lights were the souls of the people who died through loss of blood
(regardless of the specifics of their deaths). For the Aztecs, life was a gift from the Sun, and
it was through the illumination that beings became alive. This had a deep relation with their
understanding of the days, months and years. The days were the constant struggle between life
(represented by the blue color of the sky during the day) and death (represented by the blood
red of the sunrise and the purple of the sunset). The months were linked through the cycles of
the moon, which they understood perfectly and which are recorded in the Códice Matritence
(Codex of Madrid, shown in Fig. 1.2):

1. Cuando la luna nuevamente nace, parece como un arquito de alambre delgado, aún no
resplandece, y poco a poco va creciendo, (When the moon is reborn, it looks like a thin
arch of wire, it still doesn’t shine, and little by little it starts to grow)

2. a los quince días es llena, y cuando ya lo es, sale por el oriente. (fifteen days later it is
full, and once it is, it rises from the east)

3. A la puesta del sol parece como una rueda de molino grande, muy redonda y muy
colorada, (At the sunset, it looks like a huge wheel from a windmill, rounded and
maroon)
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4. y cuando va subiendo se para blanca y resplandece; aparece como un conejo en medio
de ella, y si no hay nubes, resplandece como el sol a medio día; (and when it rises, it
stays white and shiny; a sort of rabbit appears on it, and when there are no clounds, it
shines like the midday sun)

5. y después de llena cumplidamente, poco a poco se va menguando hasta que se va a hacer
como cuando comenzó; (and right after reaching its apex, little by little it shrinks until
it becomes like when it started)

6. dicen entonces, ya se muere la luna, ya se duerme mucho. (and they say, the moon is
going to die, the moon is going to sleep)

7. Esto es cuando sale ya con el alba, y al tiempo de la conjunción dicen: “ya es muerta la
luna” (Then, when the sun rises, and at the time of the conjuction, they say: “the moon
is dead”)

Every empirical observation that the Aztecs made on the luminosity was defined by tonalities,
which in turn were related to the processes of life and death. The Mayans, on the other side, were
gifted astronomers and their relation with light and the sun permeated all of their activities. In
particular, one can still see the way in which they used the shape of their pyramids to announce
important dates of the calendar, such as the Equinoxes. In Chichen Itza, the light that the
sun shines towards the pyramid makes the illusion of a serpent crawling down to Earth (cf.
Figure 1.2), letting them know that the soil is ready for planting (in March) and harvesting (in
September).

The earliest formal studies on the nature of light can be attributed to the Greeks. Their
school of natural philosophy bloomed with the work of many great minds such as Democritus,
Epicurus, Plato and Aristotle, and their first approach to light was to understand vision.
Democritus believed that the air between an object and the eye contracted and was stamped
with the details of the object. Thus, in a sort of propagation, the air reached the eye and the
vision was completed. Conversely, Epicurus believed that we are able to see objects, because
they are sending “atoms” to our eyes (and he explained that the objects didn’t run out of atoms,
because they were readily replenished by other particles). Plato and his followers thought that
the eyes emitted rays of light, which, after being scattered, allowed us to perceive the size, color
and shape of the objects.

During the golden age of the Islamic science, many of the Greek theories were debunked and
the understanding of light and vision was deepened. Al-Kindi followed the steps of Euclid—
who used geometry to understand the phenomena of reflection, refraction and the appearance

Euclid Alhazen Descartes

Figure 1.3: Light has always been a chief topic of scientific inquiries, even when Science itself was not yet
a fully-fledged discipline or method. The primitive theories of light relied on the mathematical apparatus
then available, namely, geometry, with results discovered over and over again, in the hands of Euclid
(300BC), Alhazen (c. 1000) and Descartes (c. 1650) as some of the most significant thinkers of their
respective eras.
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of shadows—and studied the shadow cast by several opaque objects, to prove experimentally
that light travels in straight lines. Furthermore, together with ibn-Sina (known in the occidental
world as Avicenna), he argued that light could not emanate from the eyes, as it would have to
fill an infinite amount of space every time we open our eyes. The culmination of optics in the
Arab world was carried by the prolific Abu Ali al-Hasan ibn al-Hasan ibn al-Haytham, known
in the west as Alhazen, who is often regarded as the greatest physicist between Archimedes and
Newton. His most important contribution to the field of Optics was his Book of Optics (Kitab-al
Manzir), in which he tackled the nature of light, the physiological aspects of the eye and the
vision, as well as the way in which lenses and mirrors can bend and focus the light. He proved
that the theory of the light emanating from the eye was wrong, and that instead light was
emanating from sources. He did this through a simple experiment in a dark room: on one of
the walls he made a small hole. Outside of it, he placed a pair of lanterns at different heights,
which cast a spot of light inside the dark room. When he covered one of the lanterns, he saw
the spot of light inside the room disappear. Thus, he concluded that light was coming from
the lantern, rather than from the eyes. Based on this experiment, he invented the first pinhole
camera and explained why the image in it was inverted.

Light has played a fundamental role not only in Science but also throughout the history of
Art: from the mere consideration of how different colors mixed together gave the impression
of different environments, to being the center of attention of a work of art. In ancient Egypt,
the masks of the pharaohs were tainted with gold to highlight their divinity. In the Christian
world, it was not the faces but the regions around the people (such as the halos) that were
enlightened to give the sense of superiority and holiness. With the advent of the Renaissance
and the mastering of light by the Italian school, led by da Vinci and Caravaggio, the world met
the chiaroscuro, a technique with which light and shadows are blended, giving the paintings a
completely new dimension (cf. Fig. 1.4, left). In the 17th century, light is no longer a tool for the
artist to highlight a specific region of the work, but it becomes rather a central figure. This is
particularly noticeable in the work of Vermeer, in which light not only is the key subject but also
brings volume to the painting. With the onset of impressionism, light is completely reinvented
and the objects are not what is painted but what is interpreted by the beholder. In the modern
times, some painters have perfected the use of light and masterpieces from which light appears
to leave the canvas have been created. Hosted by the Hermitage in St. Petersburg and by the
Museo del Prado in Madrid, Ivan Aivazovsky’s “The Black Sea at Night” and Joaquín Sorolla’s
“Niños en la playa”, shown in Fig. 1.4, are perfect examples of the mastery of light in paintings.

Figure 1.4: On the left is Caravaggio’s “The supper at Emmaus” (1601), which epitomizes the chiaroscuro
technique, using the light to point us to the important characters of the work. At the center, is Ivan
Aivazovsky’s “The Black Sea at Night” (1879), in which the light from the moon appears to be coming out
of the canvas and thus illuminating the room. On the right is Joaquín Sorolla’s “Niños en la playa” (1916),
whose mastery of light almost makes you feel like you are in the Mediterranean coast witnessing this
scene.
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Newton Maxwell Einstein

Figure 1.5: The greatest minds of modern Science have also pondered on the nature and properties of
light. Newton (1642-1727) championed the corpuscular theory of light, despite ample opposition (and
evidence) and gathered a huge amount of fundamental results in his treatise Opticks, from ray-optics to
the naming of the colors in the rainbow. Maxwell (1831-1879) put together in a closed and consistent form
the equations of electricity and magnetism, out of which he identified light as an electromagnetic wave.
This is widely regarded as one of the greatest intellectual feats and the first great unification of Physics.
Einstein (1879-1955) orchestrated the coup-de-théâtre that brought back the corpuscular theory of light to
the foreground, making a decisive step towards Quantum Mechanics, which interpretation he would later
challenge with his concept of ‘element of reality’ through the so-called EPR correlations.

1.1.2 Modern description: Maxwell equations

The scientific revolution started with the Polish astronomer and mathematician Mikołaj Kopernik
(Nicolaus Copernicus in Latin). Before Newton’s theory of gravitation, the heliocentric model
of the Universe theorized by Copernicus was difficult to accept (even though it simplified a lot
the calculations of the orbits of the planets). Although Copernicus died before his theory was
published (his ideas were held as heretic by the Catholic church), it was the spark that lit the
way towards the development of the European Science. The beginning of this revolution was
more fruitful in the protestant countries, where the influence of Rome and the Catholic church
was weaker. Living in Germany, Johannes Kepler became interested in astronomical events, and
while observing an eclipse with a pin-hole camera, he noticed that the image of the moon as
seen through the camera was larger than when it was observed directly. Kepler understood
that such an important feature was due to the size of the pin-hole, and his thorough study of it
yielded a theory of the radiation propagating through apertures, based on the fact that rays of
light travel in straight lines. In the mean time, the French school of optics was led by Descartes,
who derived the laws of reflection and refraction of light (although the credit of the discovery is
often given to Willebrord Snellius, who derived these laws using trigonometry), and by Pierre
de Fermat, who developed Snell’s law using the principle of least time, according to which the
propagation of light takes place along the path that makes it reach the final point in the least
amount of time.

On the other shore of the English Channel, Isaac Newton was developing the theory of
gravitation, for which he had to invent calculus, but he also made large contributions to the
field of optics. He showed that color was a property of light and not of the medium in which it
propagates, and using a prism he established that white light, like the one that comes from the
sun, is in fact a superposition of all the colors. He then demonstrated that the light of a single
color was not split again when passing through a prism, and that recombining all the colors
yielded again white light. Studying the way in which lenses and mirrors worked, he was able
to design a telescope operating in reflection (up to then, all the telescopes were fabricated to
operate in refraction), which suffered much less chromatic aberration. The idea was so clever,
that modern telescopes are merely more precise versions of the newtonian telescope.
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Figure 1.6: When classic meets modern.
Below is the cover page of Newton’s
Opticks, in which is developed the theory
of optics, including the dispersion of light
by which a beam of white light can be
decomposed into the seven colours of the
rainbow. On top, one of the marvels that
technology can achieve with Light, with
a display made of OLEDs (organic light
emitting diodes), with a pixel density of
448 pixels per inch.

Newton also theorized about the nature of light. He was an advocate of the corpuscular nature
of light, thus believing that it was made of minuscule corpuscles, as opposed to matter, which
was made of larger particles. However, even at that time, there was evidence that light behaved
as waves. Huygens published an oscillatory theory of light in his Traité de la lumière (Treatise on
light), which was supported by Romer’s experiment showing that light propagates at a finite
speed. However, it was not until the beginning of the nineteenth century that Young showed
that light behave as a wave, thus supposedly proving Newton wrong. In the words of Young:

…when a beam of homogeneous light falls on a screen in which there are two
very small holes or slits, which may be considered as centers of divergence, from
whence the light is diffracted in every direction. In this case, when the two newly
formed beams are received on a surface placed so as to intercept them, their light is
divided by dark stripes into portions equal, but becoming wider as the surface is
more remote from the apertures, so as to subtend very nearly equal angles from the
apertures at all distances, and wider also in the same proportion as the apertures
are closer to each other. The middle of the two portions is always light, and the
bright stripes on each side are at such distances, that the light coming to them from
one of the apertures, must have passed through a longer space than that which
comes from the other, by an interval which is equal to the breadth of one, two,
three, or more of the supposed undulations, while the intervening dark spaces
correspond to a difference of half a supposed undulation, of one and a half, of two
and a half, or more.

By repeating this experiment, Young was able to connect the color of light to the wavelength of
the undulations, and was able to identify approximately the wavelength of the seven colors that
according to Newton composed white light.

It was with the industrial revolution, and the experiments with electricity and magnetism
that the theory of electromagnetism took its final form. The works of André-Marie Ampère,
Charles-Augustin de Coulomb and Michael Faraday laid the basis of the theory, which James
Clerk Maxwell unified with his famous set of four equations

í( � íE =
⇢
✏
0

, í( � íB = 0 , (1.1a)

í(ù íE = *
) íB
)t

, í(ù íB = �
0
íJ + �

0
✏
0

) íE
)t

, (1.1b)

where íE (resp. íB) is the electric (resp. magnetic) field, ⇢ is the density of electric charges, íJ
is the density of currents, and ✏

0
and �

0
are the permittivity and permeability of free space,

respectively. A simple algebraic manipulation, taking the curl of Eqs. (1.1b), using the vector
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identity í( ù ( í( ù íA) = í(( í( � íA) *(2 íA, and assuming that there are no sources of charges or
currents, yields a pair of wave equations for the electric and magnetic field

(
2 íE =

1

c2
)2 íE
)t2

, and (
2 íB =

1

c2
)2 íB
)t2

, (1.2)

where c = 1_
˘

✏
0
�
0

is the velocity at which these waves propagates, i.e., the speed of light, thus
settling the nature of light as waves. After Maxwell unified the theory of electromagnetism and
predicted that light propagated as a wave, a large effort was put all across Europe to either
demonstrate of refute the prediction. After only twenty four years, in 1888, a doctoral student
of Helmholtz, Heinrich Hertz, built in his laboratory the first radio wave transmitter, thus
demonstrating the reality of electromagnetic waves.

Maxwell’s equations (cf. Eq. (1.1)) constitute the full description of Light according to the
classical theory. However, by the end of the 19th century, evidence started to pile up suggesting
that not all observations were compatible with the classical theory, and that there was a need
for a new theory. Indeed—Quantum Mechanics—would change Physics forever.

Technology could nevertheless develop tremendously based mainly on the classical theory
alone and the quantum character of Light has mainly remained a question of fundamental
interest. However, with the advent of the information age, where performance and efficiency
are never enough and the barrier of classical physics are quickly approached, the emergence of
quantum light in all aspects of human endeavors becomes every day more perceptible. With the
announcement by Google of Quantum Supremacy at the time of writing, we might be entering
in the technological quantum age.

1.1.3 Light in our lives

In our contemporary world, light is all around us. Even during the night. We are naturally
drawn towards shiny objects, and we now have a myriad of bright displays battling for our
attention: computers, televisions, advertisements, mobile phones, tablets. A short stroll down
Shinjuku in Tokyo, Piccadilly Circus in London, or Times Square in New York, would suffice to
see how far we have come from the early days in which light had a mystic component. Light
is so abound around us, that many youngsters have never had the chance to see the Milky
Way on a cloudless night, simply because there is so much artificial light blinding us. The
Starlink project of SpaceX has even launched a series of satellites into orbit to provide internet
connection in a fashion similar to GPS, making it accessible anywhere on Earth. One problem
with this is that the satellites are visible and, when there are enough of them, we will not be
able to see the real stars anymore, but an uncanny mesh of artificial ones.

On a more relatable scale, the screens of our mobile phones, omnipresent, shining on our
faces, are there reminding us that the world keeps on revolving around us, and it has become
practically impossible to disconnect from it. Understanding the relationship between light

Shinjuku, Tokyo Piccadilly Circus, London Times Square, New York City

Figure 1.7: Light pollution in metropolises: Shinjuku in Tokyo (left), Picadilly Circus in London (center)
and Times Square in New York City (right) are only the most brilliant examples of the magnitude of the
light pollution that brightens our nights.
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and electromagnetic fields has revolutionized technology. The advent of the Internet, initially
thought of as a an efficient way to share large amounts of information collected from the
experiments at CERN (Centre Européen de la Recherche Nucléaire), has become global and
now it enables us to know, in a fraction of a second, what is happening on the other side of the
Earth. The information, represented by a stream of zeroes and ones, is encoded into light and
then travels vast distances, across continents and oceans, by fiber optic cables.

All these electronic devices require energy to work, and the 21th century came together with
the alerts of global warming. We are using too many dirty energy sources (fossil fuels, coal,
gas, among others) which are changing the climate and in the long term will end up reducing
our quality of life. Thus, a part of the scientific community is facing the problem of making
green energy sources as available and efficient as the ones we are currently using. One of the
most obvious sources of (free) energy is right in front of us, and for millennia has captivated
us: the Sun. Nature is wise, and evolution has made plants very efficient at capturing and
converting light from the Sun into useful energy for their sustenance. The eyes of fishes living
in the deepest regions of the oceans have evolved in such a way that they are able to catch
single photons. Recent research by Tinsley et al. (2016) shows indications that the human eye is
also able to observe single photons. In comparison, the most efficient solar panels available to
date reach a 23% of efficiency, which is somewhat far away from the 30% nominal efficiency that
according to Stryer (1981) is obtained by the photosynthetic process. Thus, one upcoming task
for scientists is to achieve or exceed such a level of efficiency of detection and manipulation of
light, using artificial materials.

1.2 quantum light

1.2.1 Quantum Mechanics brings Photons

The dawn of the 20th century has been crucial to Physics. The classical theory of Electromag-
netism, one of the most beautiful theories that the human mind has developed, was not able to
account for the thermal emission of an ideal emitter (a simple black box). The classical equation
predicted that the intensity of light emitted at ultraviolet wavelengths (less than 400 nm between
consecutive maxima of the wave) was diverging. Clearly, this could not be right, as it implies
that matter would radiate all its energy until it reaches the absolute zero, and the problem
was coined as the “ultraviolet catastrophe”. Max Planck deduced an expression for the spectral
distribution of the intensity which fitted nicely with the experimental results. However, to write
it, he had to make an unfounded assumption: the electromagnetic energy can only be emitted
or absorbed in bundles—which he called quanta—of energy, namely

E = nh⌫ , (1.3)

where E is the electromagnetic energy, n is an integer number, h is a constant of proportionality—
which later became known as “Planck’s constant”—and ⌫ is the frequency of the wave.

At around the same time, Hertz noticed that when a beam of light was directed onto a metal
plate, it induced some sparks: there was an electrical current induced by the incoming light.
This, however, was not surprising, as by then it was known that electrons in metals are easy
to detach from the atoms, provided that you gave them enough energy. What puzzled Hertz
was that in different materials, the sparks began to appear at different “threshold” frequencies.
Furthermore, Hertz noticed that increasing the brightness of the beam produced more electrons
(a larger current) without increasing their energy, while increasing the frequency of the beam
increased the energy of the electrons without increasing their amount. This became known
as the photoelectric effect, and it was not until a few years later that Einstein (1905) managed
to explain it: He realized that Planck’s assumption on the quantization of the energy of light
was not merely a mathematical trick to make the equation fit the experiment, but that it was
rather the true nature of light. In fact, according to Einstein, light is not a wave but a stream of
particles whose energy is related to their frequency ⌫ through Planck’s relation, E = h⌫. Thus,
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the explanation of the photoelectric effect was reduced to a problem of elastic scattering: if the
photon that impinges onto the metal has enough energy—or equivalently, a frequency above
the threshold for excitation—it could collide with an electron of one of the atoms and detach it.

Einstein’s understanding of light and the elegantly simple explanation of the photoelectric
effect were the main reason for which he received the Nobel prize in 1921 (although by then
he had also explained the Brownian motion, he had stated the equivalence between mass and
energy, and he had developed the special and general theories of relativity, all recognized
as “services to theoretical Physics” in his Nobel nomination). Furthermore, by realizing that
Planck’s hypothesis was in fact a physical reality, Einstein brought to life the Photon—the
quantum of light—which gives another proof of the quantized character of Nature, and is the
central physical object of this Thesis.

The 20th century watched the birth and quick development of Quantum Mechanics. While
the first part of the century was devoted to the understanding of atoms, the scientific efforts
turned to the study of the way in which electromagnetic fields interact with matter. These
efforts quickly led Schawlow and Townes (1958) to the development and fabrication of the
Maser, which used the newly discovered (also by Einstein) stimulated emission to generate a
highly coherent beam of light. Such a coherence made the beam almost monochromatic and
allowed it to propagate through long distances without dispersing. While the energy of the
light emitted by the maser corresponded to the microwaves, some years later Maiman (1960)
built for the first time such a device emitting light in the visible range of the electromagnetic
spectrum. The latter was coined as the Laser, changing the M of Maser (coming from Microwave)
for an L (corresponding to Light, as visible light is what people commonly recognize as Light).
We are now already at the stage where the concepts of interest in this Thesis can be brought
to critical analysis and further developed, so we move on to the parts of the theory that are
required to obtain the results that I will present in the subsequent chapters. From this point
onward, the discussion will be consequently more detailed.

1.2.1.1 Formalism

The dynamical aspect of quantum mechanics can be studied in different ways, depending on
the mathematical objects that encode the temporal dynamics. The state of a quantum object is
written down as a wavefunction, noted as  (r, t)Î, which describes the density of probability
to find the quantum object at the position r in space at time t. When the quantum object is
subjected to a Hamiltonian with an operator ÇH (we have used the ˆ notation to highlight that
the object is an operator), its wavefunction evolves according to the time-dependent Schrödinger
equation

i=)t  (r, t)Î = ÇH  (r, t)Î . (1.4)
where = = h_2⇡ is the reduced Planck constant. Formally, the wavefuction of the quantum
object is a vector within the Hilbert space of the system. There, one also finds the operators
associated to the object, among which are the so-called “observables”, whose mean values can be
measured directly in an experiment. For instance, the mean value of the Hamiltonian operator,
Í

ÇHÎ, is the average energy of the object. The formal solution to Schrödinger equation for a
time-independent Hamiltonian can be obtained by integrating Eq. (1.4):

 (r, t)Î = exp(*i ÇHt_=)  (r, 0)Î , (1.5)

where  (r, 0)Î is the state of the system at the initial time t = 0. Once the wavefunction in
Eq. (1.5) is obtained, we have all the information about the quantum object, and we can compute
all the probabilities that we deem relevant: given an operator ÇO on the Hilbert space of the
quantum object, the mean value of the operator at time t is given as

Í

ÇOÎ(t) = Í (r, t) ÇO  (r, t)Î , (1.6)

where Í (r, t) =  (r, t)Î†. Note that in Eq. (1.6) all the information about the dynamics of the
system is encoded in its wavefunction  (r, t)Î. This is referred to as the Schrödinger picture of
Quantum Mechanics.



10 preliminaries

Manipulating Eq. (1.6) by replacing the wavefunction by its definition, given in Eq. (1.5), we
find

Í

ÇO(t)Î = Í (r, t) ÇO  (r, t)Î ,

= Í (r, 0) ei ÇH†t_= ÇOe*i ÇHt_=  (r, 0)Î , (1.7)

= Í (r, 0) ÇO(t)  (r, 0)Î ,

where we have defined the operator ÇO as a function of time as ÇO(t) = ei ÇH†t_= ÇOe*i ÇHt_=, which is
the formal solution to the Heisenberg equation for the operator ÇO:

i=)t ÇO = [ ÇH , ÇO] , (1.8)

where ÇH is the Hamiltonian operator in Eq. (1.4) and [ ÇH , ÇO] í ÇH ÇO * ÇO ÇH is the commutator.
Note that in Eq. (1.7) the mean value is computed through the initial condition of the wavefuc-
tion, and all the temporal dependence is in the operator rather than in the wavefunction. This is
referred to as the Heisenberg picture of Quantum Mechanics, and is completely equivalent to the
Schrödinger picture.

In the descriptions above, we have assumed that the Hamiltonian that rules the dynamics of
the system is independent of time. However, this is not always the case. In particular, one of the
Hamiltonians that we will used extensively throughout this Thesis, describing the excitation
of a quantum object by a coherent field (such as the one generated by a classical laser), is
time-dependent. It is given by

Ha = =!aa†a+ =⌦a(e*i!Lta† + ei!Lta) , (1.9)

where !
L

is the resonance frequency of the coherent field, which drives with intensity ⌦a a
quantum field with natural frequency !a described with the so-called "annihilation operator" a.
This is the ladder operator of the harmonic oscillator (see Feynman (1998) for an excellent
introduction), which upgrades in the context of “second quantization” to the operator that
subtracts one particle from the field. Its hermitian conjugate, a†, is consequently the creation
operator, that adds a particle. Second quantization is the quantum formalism that describes
systems with a varying number of particles, a trademark of quantum field-theory in general and
of optics in particular, where photons get constantly created and absorbed. The time-dependent
Hamiltonian in Eq. (1.9) makes the evolution of the state of the system more complex than

Planck Schrödinger Heisenberg Dirac

Figure 1.8: The fathers of quantum mechanics. Plank (1858-1947) solved the ultraviolet catastrophe making
the assumption that the energy of the electromagnetic field could only be transmitted in bundles of
energy, thus introducing the concept of quantization. After Einstein’s theory for the photoelectric effect,
Schrödinger (1887-1961) and Heisenberg (1901-1976) developed (independently) the formalism of Quantum
Mechanics. Dirac (1902-1984) extended it to account for relativistic effects.
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in Eq. (1.5). We can suppress the temporal dependence by transforming the Hamiltonian in
Eq. (1.9) into a frame that rotates with the same frequency at which the laser is driving the
system. To do so, we need to split the Hamiltonian in two components:

H(t) = H
0
+ V (t) , (1.10)

where H
0

is completely independent of time, whereas all the temporal dependence is kept in
the term V (t). In agreement with the Schrödinger picture, the evolution of a wavefunction due
to the time-independent Hamiltonian H

0
is given by

 (t)Î = U
0
(t, 0)  (0)Î , (1.11)

where U
0
(t, 0) = e*iH0t_= propagates the wavevector  (t)Î in time, and satisfies the differential

equation
i=)tU0

(t, 0) = H
0
U
0
(t, 0) . (1.12)

However, this function does not take into account the time-dependent part of the Hamiltonian,
and as such it does not describe accurately the evolution of the system.

Conversely, we may define a new state vector  (t)Î as some rotation of the state vector  (t)Î,
namely

 (t)Î í R(t)  (t)Î and  (t)Î = R†
(t)  (t)Î , (1.13)

where R(t) is a function still to be determined. Taking the temporal derivative of Eq. (1.13) we
obtain (for simplicity, we drop the explicit temporal and spatial dependence of the operators
and wavefunctions)

i=)t  Î = i=)t (R  Î) ,
= i=()tR)  Î+ i=R)t  Î ,

= i=()tR)R†
 Î+RH  Î ,

= i=()tR)R†
 Î+RHR†

 Î ,

=
⌅

i=()tR)R†
+RHR†

⇧

 Î , (1.14)

which is a Schrödinger equation for the wavevector  Î with a modified Hamiltonian ÉH =

i=()tR)R†
+RHR†. The choice of the function R(t) depends on the specificities of each system.

This transformation is commonly referred to as the interaction or Dirac picture of Quantum
Mechanics. For the Hamiltonian in Eq. (1.9) the transformation that removes the temporal
dependence is R(t) = ei=!Lta†a, and the Hamiltonian in the rotating frame becomes

ÉHa = =(!a *!L
)a†a+ =⌦a(a† + a) . (1.15)

With the formalism that we have introduced above the description of the temporal evolution
of a quantum system is limited, since the propagator of the state is given by the Hamiltonian
only, which, being always an hermitian operator, cannot describe dissipative processes. To
include such effects into the description, we need to upgrade the wavefunction of the system to
a “density matrix” ⇢. If the state of the system is pure (that is, it can be written as a wavefunction),
then the density matrix of the state is given by the tensor product between the ket ( Î) and the
bra (Í ) associated to the system: ⇢ =  Î Í . As such, the dynamics of the density matrix is
deduced directly from Schrödinger equation (1.4):

)t⇢ = ()t  Î) Í +  Î ()t Í ) ,

= *
i
=
H  Î Í + i

=
 Î Í H ,

= *
i
=
H⇢+ i

=
⇢H ,

=
i
=
[⇢,H] , (1.16)
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which is known a the Liouville–von Neumann equation. This equation describes the system
assuming that all the degrees of freedom are taken into account. However, in general it is
impossible to satisfy such a condition. A realistic description of a quantum system needs to
take into account that the system is not isolated from the rest of the Universe, but rather that it
is in contact with it. Therefore, there exists a larger Hamiltonian that describes the complete
dynamics of the system of interest with the rest of the environment. Such a Hamiltonian has
three contributions

H = H
S
+H

R
+H

S+R
, (1.17)

where H
S

describes the dynamics of the systems on its own, H
R

describes the dynamics of
the environment on its own, and H

S+R
describes the coupling between the system and the

environment. Obtaining the solution for the wavefunction as in Eq. (1.5) becomes intractable
since the number of degrees of freedom of the environment increases. However, even though we
are taking into account all the degrees of freedom, we are still only interested in the dynamics
of the system. Thus, if the state of the system plus environment (that we will refer to as A‰R)
is given by a density matrix ⇤(t), then we will be interested only in the reduced density matrix,
that we obtain by tracing all the degrees of freedom from the environment, thus defining

⇢(t) = Tr
R
[⇤(t)] . (1.18)

In this way, if ÇO is an operator in the Hilbert space of our system, then the mean value of the
operator is given by

Í

ÇOÎ(t) = TrS‰R[ ÇO⇤(t)] = Tr
S
{ ÇO Tr

R
[⇤(t)]} = Tr

S
[ ÇO⇢(t)] . (1.19)

The objective is now to obtain an equation for the reduced density matrix ⇢(t) with the properties
of the environment entering in the description only as parameters. The details on how to get to
the equation governing the reduced density matrix are textbook material, and are particularly
well explained by Carmichael (2008). The result that one obtains is that the dynamics of the
reduced density matrix is given by a so-called Master equation of the type (from here onward,
we set = = 1):

)t⇢ = i[⇢,H] +
1

2

…

k
LLk⇢ , (1.20)

where we have used the notation

LLk⇢ í
⇠

2L†

k⇢Lk +L
†

kLk⇢+ ⇢L
†

kLk
⇡

. (1.21)

In Eqs. (1.20-1.21), the operators Lk are typically referred to as the jump operators of the system,
and they are responsible for changing the state of the system by, e.g., removing or adding
particles. Note that there is no issue with the conservation of energy, as the particles that
are removed or added come from or go to the environment (which we have traced out).
Equation (1.20) is commonly referred to as the Master equation in the Lindblad form, and to get
there two important approximations had to be made:

1. The Born approximation: We assume that at the time t = 0, there are no correlations between
the system and the environment, so that ⇤(0) = ⇢(0)R

0
, where R

0
is an initial environment

density operator. At later times, the interaction between the system and the environment
induces correlations between them. However, we assume that the environment is large
enough to be unperturbed by the system (while the latter is clearly affected by the former!),
so that at any given time ⇤(t) = ⇢(t)R

0
.

2. The Markov approximation: While it may be reasonable from physical arguments that the
state of our system depends on the history of the state, if the environment with which the
system is in contact is itself in thermal equilibrium, we also do not expect it to preserve
the minor changes induced in it by the interaction with the system for too long. At least
not long enough to change significantly the future evolution of the system. In other words,
we assume that if �i and �j are operators of the environment, then their correlations are
localized in time: Í�i(t)�j(t®)ÎR ◊ �(t* t®), where � is the Dirac delta function.
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1.2 quantum light 13

Together, these two conditions are known as the Born-Markov approximation, and it relies on the
existence of two scales of times: a slow one for the dynamics of the system and a rapid one
describing the correlations of the environment.

As an application, let us consider a harmonic oscillator driven by a laser. The Hamiltonian
describing this system is given by Eq. (1.9), which in the frame that rotates with the frequency
of the laser becomes the Hamiltonian in Eq. (1.15). Considering that the harmonic oscillator
is in contact with an environment, to which it can lose photons at a rate �a, we can write the
master equation in the lindblad form, as in Eq. (1.20):

)t⇢ = i[⇢,Ha] +
�a
2
La⇢ , (1.22)

where Ha is the Hamiltonian in Eq. (1.15) and La⇢ is as in Eq. (1.21). In the steady state, obtained
when the left-hand side of Eq. (1.22) equals zero, the harmonic oscillator is found in a pure
state commonly referred to as a “coherent state”. Using the basis of Fock states kÎ—with k an
integer which describes the number of particles contained in the field—the coherent state reads

↵Î = e*↵
2
_2
…

k

↵k
˘

k!
kÎ . (1.23)

The parameter ↵ is a complex number, which for the coherent state of the harmonic oscillator
described through the master equation (1.22) is given by

↵ = *
2i⌦a(�a * 2i�a)

�2a + 4�2

a
, (1.24)

where we have used the notation �a = (!a *!L
) for the detuning between the laser and the

oscillator. Furthermore, since the coherent state in Eq. (1.23) is an eigenstate of the annihilation
operator a with eigenvalue ↵, i.e., a ↵Î = ↵ ↵Î, it is straightforward to show that the mean
population—the average number of photons—of the harmonic oscillator is given by

na = Ía†aÎ = Í↵ a†a ↵Î = ↵2 =
4⌦

2

a

�2a + 4�2

a
. (1.25)

1.2.1.2 Cascaded Coupling

Now that we have laid the grounds to describe quantum objects through the master equation,
we turn to the description of the excitation of a quantum object using the light emitted by
another quantum system, which is the central theme of this Thesis. Usually, when one considers
the coupling between two quantum systems, the description is done through an interaction
Hamiltonian. In the second quantization formalism, such a Hamiltonian reads in its most simple
form:

HI = g(c†
1
c
2
+ c†

2
c
1
) , (1.26)

where c
1
, c

2
are annihilation operators describing the particles of the coupled system, and g

is their interaction strength. If the particles described by ci have a decay rate �i, and are freely
evolving with a Hamiltonian Hi, i = 1, 2, the master equation describing the dynamics of this
system is:

)t⇢ = i[⇢,H
1
+H

2
+HI ] +

�
1

2
Lc1⇢+

�
2

2
Lc2⇢ , (1.27)

where Lc⇢ is defined in Eq. (1.21). Depending on whether the coupling HI or the dissipation �i
dominates, one speaks of strong or weak coupling, respectively. If one of the two systems,
say, 1, is itself excited externally, for instance being driven by a laser, or merely being given
a non-vacuum initial condition, then one has a crude picture of system 1 exciting system 2.
This is a fairly accurate description in the weak-coupling limit where the dynamics becomes
directional and irreversible, simply because excitation are dissipated by system 2 before they
can cycle back to system 1.
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The coupling between quantum systems does not have to be reversible: it can instead
correspond to the scenario of a source and its target. In this case, there is a deep asymmetry
between the coupled systems. For instance, one can remove the target from the beam of the
source, which leaves the latter unaffected while the former passes from being irradiated to
the vacuum. Note that such an asymmetry does not have to hold on logical grounds. In fact,
in electronics, while an ideal source should not be affected by the circuit it powers, in reality,
there is a load and every component affects all the others to some extent. In photonics, the
picture of a flying qubit, left to propagate long enough before it meets its target, makes it
intuitively clear that it should be possible to forbid back-action. This could also be realized by
taking advantage of the fast-growing field of chiral optics developed by, e.g., Petersen, Volz,
and Rauschenbeutel (2014), Gonzalez-Ballestero et al. (2015), Pichler et al. (2015), Coles et al.
(2016), Mahmoodian, Lodahl, and Sorensen (2016), Guimond et al. (2016), Lodahl et al. (2016),
and Gonzalez-Ballestero et al. (2016).

Gardiner (1993) and Carmichael (1993b) treated (independently) the problem of quantum
excitation without feedback in two consecutive Letters in the Physical Review. This achieved
to set up a formalism—named the “cascaded formalism” by Carmichael—that allows to excite a
system (which we will call the “target”) by an other (the “source”) without back-action from the
target to the source. This permits to think separately of the quantum source, which properties
can be independently studied and then directed onto a target. For historical accuracy, let us
mention that the problem was first contemplated by Kolobov and Sokolov (1987), who tackled
it by providing all the correlations of the exciting quantum field. This was recognized as an
overkill by Gardiner (1993) and Carmichael (1993b) (Gardiner had made prior attempts along
these lines). They proposed instead to model the quantum source’s dynamics as well as the
response of the target, even if only the latter is of interest.

Despite the conceptual importance of quantum excitation, there has been a moderate follow-
up of this cascaded formalism, which I believe is a deep and far-reaching contribution to the
problem of light-matter interaction. Even though it became textbook material (see the last
chapter from Gardiner and Zoller (2000)’s book) and generated a sizable amount of citations,
few texts do actually fully exploit the idea. Gardiner and Parkins (1994) (the formalism is
sometimes also named after these two authors) undertook a more thorough analysis of various
types of non-standard statistics of the source and Cirac et al. (1997) used it to describe perfect
transmission in their proposal for a quantum network, but overall, the core of the literature
using the formalism focuses on specialized particular cases, such as driving with squeezed
light, as is done by Smyth and Swain (1999) and Messikh, Tanaś, and Ficek (2000). Typically, the
discussion is then held at the level of correlations from a quantum state (namely a squeezed
state), as opposed to dynamical correlations from a quantum source. The other studies, already

CarmichaelGardiner

Figure 1.9: Gardiner (1942) and Carmichael (1950) developed (separately) the formalism of cascaded
excitations, which readily allows the description of the excitation of an optical target by the emission of a
quantum object.
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evoked, turned to approximate or indirect approaches, quite similar to the earlier attempts
before the cascaded formalism was set up. The reasons for this is certainly a mix between
convenience of using well-known and established formalism and the as-yet unclear advantages
of the alternative one.

The derivation of the cascaded coupling requires the usage of the so-called input-output
formalism, the details of which are given by Gardiner and Zoller (2000). First, the equations of
motion are expressed in the quantum Langevin form, thus allowing to set the output field of
one of the systems (the source) as the input field for the other (the target). This can be brought
to a master equation type of description, with both coherent and Lindblad terms that contrive
to direct the flow of excitation from the source to target only. This makes all the operators of
the source independent from those of the target, while in turn those depend on operators of the
source. The generic case where the source (resp. target) is described by the Hamiltonian H

1

(resp. H
2
) and has a decay rate �

1
(resp. �

2
) is then ruled by the following master equation:

)t⇢ = i[⇢,H
1
+H

2
] +

�
1

2
Lc1⇢+

�
2

2
Lc2⇢*

˘

�
1
�
2

⇠

[c†
2
, c

1
⇢] + [⇢c†

1
, c

2
]

⇡

. (1.28)

The source must also be excited, which can be done either by an incoherent or by a coherent
(classical) type of excitation. The incoherent excitation is described simply by adding the
Lindblad term (Pc1_2)Lc†

1

⇢ to Eq. (1.28). The coherent excitation, however, requires a subtler
description, for which one uses the input–output formalism again. The coupling between a
coherent field and the system (that latter will be used as the source of quantum excitation)
happens through an input channel for the said system. If such an input channel is the only
one available to excite the source, then it follows that the only output channel from the
source also contains the coherence of the driving field. In this case, the target of the quantum
excitation is also driven by the coherent field, and its dynamics is given by Eq. (1.28) setting
H

1
= !

1
c†
1
c
1
* i

˘

�
1
E(c†

1
* c

1
), and H

2
= !

2
c†
2
c
2
* i

˘

�
2
E(c†

2
* c

2
), i.e., the dynamics is ruled by

the master equation:

)t⇢ = i
⌧

⇢,!
1
c†
1
c
1
+!

2
c†
2
c
2
* i

˘

�
1
E(c†

1
* c

1
)* i

˘

�
2
E(c†

2
* c

2
)

�

+

+
�
1

2
Lc1⇢+

�
2

2
Lc2⇢*

˘

�
1
�
2

⇠

[c†
2
, c

1
⇢] + [⇢c†

1
, c

2
]

⇡

, (1.29)

where E is the amplitude of the coherent field driving the source. Note that the effective driving
intensity, i.e., ⌦

1
=

˘

�
1
E , depends on the decay rate of the system that is being excited, in

agreement with the fact that a system that cannot emit cannot be excited either. To prevent the
target to be also driven by the coherent field that drives the source, one can use another input
(and their corresponding output) channel to excite the source (and also the target). Each of
these channels couples with an amplitude ✏i f 1, with the condition that

≥

k ✏k = 1, the sum
being over all the input channels. In this case, and considering only two input channels (with
amplitudes ✏

1
and ✏

2
= 1* ✏

1
) as well as only one input channel for the target (with amplitude

1), the dynamics of the system is given by Eq. (1.28) with H
1
= !

1
c†
1
c
1
* i

˘

✏
1
�
1
E(c†

1
* c

1
),

H
2
= !

2
c†
2
c
2
, and replacing the coupling strength

˘

�
1
�
2

by
˘

(1* ✏
1
)�

1
�
2

in the second line of
Eq. (1.28), i.e., the dynamics is now ruled by the master equation:

)t⇢ = i
⌧

⇢,!
1
c†
1
c
1
+!

2
c†
2
c
2
* i

˘

✏
1
�
1
E(c†

1
* c

1
)

�

+

+
�
1

2
Lc1⇢+

�
2

2
Lc2⇢*

˘

✏
2
�
1
�
2

⇠

[c†
2
, c

1
⇢] + [⇢c†

1
, c

2
]

⇡

, (1.30)

where ✏
2
= 1 * ✏

1
. The additional input channel to the source makes the coupling between

the coherent field not as efficient as when there is only one input channel, thus reducing the
effective driving intensity. For the target, although the coupling strength is also reduced, now
the driving is uniquely due to the emission from the quantum source.

Putting Eq. (1.28) in the Lindblad form contributes a Hamiltonian part. The formalism thus
corresponds to a quantum coherent coupling, allowing the description of continuous wave
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(cw) and resonant excitation of quantum states. Importantly, in contrast to the Hamiltonian
coupling in Eq. (1.26), the coupling strength is now fixed by the decay rate of the source and
of the target. An infinitely-lived target cannot be excited. The stronger one wishes to make
the coupling between a source and its target, the stronger has to be their (geometric) mean
dissipation. This imposes some fundamental constrains on external driving (or driving without
feedback). In contrast, the Hamiltonian coupling sets the coupling strength and decay rates
independently. While it would therefore appear that the Hamiltonian coupling has the upper
hand, and that one should strive for the standard strong-coupling regime, we will show in the
following chapters that the cascaded architecture can be superior to the other types of coupling
in some cases and depending on the end purpose.

Finally, as a closing comment on the cascaded formalism—which I will use in this form
following the literature—it is interesting to point out that the Lindblad form (1.20) is complete
enough to actually also describe such asymmetric source/detector scenarios. Indeed, I have
recently shown with Downing et al. (2019) that the cascaded case is a particular case of the
Lindblad equation when one considers that a pair of quantum objects can be coupled through
both a Hamiltonian (which yields a coherent coupling) and a reservoir (which, conversely,
yields an incoherent coupling). The relative phase between these two types of couplings leads
to a quasi-chiral behaviour, from which the cascaded formalism is recovered when the feedback
from one of the systems is completely blocked.

We have now introduced the overall background of light in its quantum setting, up to the
technical details required to describe it theoretically. We will now focus on another central
aspect of this Thesis, which is also for that matter another aspect of the quantum theory of light,
namely, photon correlations. This starts with a beautiful and stunning discovery from one of
the lesser-known heroes of Science.

1.2.2 Hanbury Brown

Robert Hanbury Brown (cf. Fig. 1.10) was a British physicist and astronomer. Born in 1916 in
India to an army officer, he returned to England at the age of 8 to attend school. Early in his
youth, he left the elementary school for the Brighton Technical College, where he obtained a
Bachelor’s degree in Electrical Engineering. It was the second half of the 1930s, and England
still had the memories of the German Zeppelin raids (the first of which took place over London
in April, 1915) stuck in its mind. Thus, a large effort was devoted to the development of
technologies that would help to prevent future air raids; specially those taking place at night

Figure 1.10: Robert Hanbury Brown (1916-2002) pioneered the experiments involving correlations between
photons. He developed an observatory in the Australian desert, in which he placed an interferometer
of radio waves (right). The detectors were placed on top of a circular railing, with 94 m of radius,
which enabled the astronomers to vary easily the distance between the detectors, and thus measure the
correlations in the light coming from distant stars. A new theory of light was needed to account for
Hanbury Brown’s genius intuition that photons would be correlated.



i
i

“EwQL” — 2019/10/28 — 2:05 — page 17 — #20 i
i

i
i

i
i

1.2 quantum light 17

when the pilots could not locate enemy aircrafts simply by looking at the sky. A possible solution
was to use radars—a secret technique introduced in the United Kingdom by Robert Watson-
Watt, and which consisted in using radio waves (electromagnetic waves whose wavelength
is of the order of meters) to transmit information across large distances—to find the position
of planes while in the air. Although the normal career path for a scientist would have been
to pursue a PhD degree, Hanbury Brown was recruited to work for the government in the
development of technologies involving the radar. In particular, his work focused on how to
optimize the emission and reception of radio signals, in such a way that they could be used
by RAF airplanes to locate other planes while flying. Naturally, this posed great difficulties
and many approaches were taken before finding the best way to incorporate radars into planes.
Thanks to Hanbury Brown and his team’s effort, many air raids were prevented or neutralized
when the second World War broke. By the end of the war, Hanbury Brown was one of the
world’s experts in radio waves, and he turned his “peacetime” activity to the Bernard Lovell’s
radio astronomy group at the University of Manchester. While trying to measure the angular
size of radio stars (emitting light with wavelengths in the scale of meters), he and Cyril Hazard
developed a radio interferometer. With it, they were able to measure the distance between the
two detectors at which the signal from the stars loses its coherence. As the angular size becomes
smaller, the required separation to lose such a coherence increases, to the point at which it
becomes impractical to measure. Then, as Hanbury Brown (1991) recounts:

This problem worried me for weeks and I could think of nothing else, until one
night in 1949 I suddenly thought:

If the radiation from a discrete source in the sky is picked up at two different
places on Earth, is there anything else besides the phase and the amplitude of the
signals which we can compare to find the mutual coherence?

And into my mind came quite clearly the image of a man looking at the “noise-like”
signal received from a radio source on a cathode-ray tube. Supposing, I thought,
there was another man many miles away looking at another identical cathode-ray
tube, would he see the same noise-like signal? If in fact there is a similarity between
what the two men see, could it perhaps, be used as a measure of mutual coherence?

Working out the theory, he realized that he was on the right track, and that if the radiation
received in the two places is mutually coherent, then the fluctuations in intensity of the signal
are also correlated. He then designed an interferometer for the intensity, rather than for the
amplitudes, and started making measurements.

Before designing enormous radio telescopes to look at the stars, he wanted to make sure
that his idea—backed by Richard Twiss’ calculations—was correct, and that they would not be
wasting time and money in a void enterprise. Hanbury Brown and Twiss (1956a) made a simple
experiment in which they measured the correlations of the light emitted by a high-pressure
mercury arc, observing that the light was indeed correlated. The results of the paper caused a
big controversy, with Brannen and Ferguson (1956) reporting a null experiment, without being
able to reproduce the observed correlations. Quickly after that, Hanbury Brown and Twiss
(1956b) showed that the observation was correct, but that Brannen and Ferguson (1956)’s setup
was not sensitive enough, and that it would take them about a thousand years to obtain an
equivalent accuracy in the correlations with their setup. Still, even though the results were
sound, Hanbury Brown and Twiss had trouble getting funding to build a large radio telescope.
In fact, the idea was so revolutionary and the result so unexpected, that at some point Hanbury
Brown was literally thrown a copy of Dirac’s Quantum Mechanics to his face and was suggested
to look at page 14, where Dirac stated that interference between two different photons can never
occur. About this, Hanbury Brown (1991) wrote:

To me the most interesting thing about all this fuss was that so many physicists
had failed to grasp how profoundly mysterious light really is, and were reluctant to
accept the practical consequences of the fact that modern physics doesn’t claim to
tell us what things are like in themselves but only how they behave.
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Time and more precise measurements proved Hanbury Brown and Twiss right. The intensity
interferometer, now known as the Hanbury Brown-Twiss interferometer, has since been used
in a myriad of experiments, including Kimble, Dagenais, and Mandel (1977)’s measurement,
in which the observation of photon antibunching proved the quantum nature of light, and
now the Hanbury Brown and Twiss effect is routinely observed in countless laboratories across
the world. More importantly, the Hanbury Brown and Twiss effect was the starting point for
the modern, i.e., quantum theory of light. This was already recognized by early advocates of
Hanbury Brown’s cause, prominently by Purcell (1956) who understood that “far from requiring
a revision of quantum mechanics, [it] is an instructive illustration of its elementary principles”.
Indeed, Purcell identified the intensity correlations as the results of bosonic fluctuations from
indistinguishable particles (he also predicted the opposite tendency for electrons). In this view,
intensity correlations result from the tendency of two indistinguishable particles to clump
together in their observables (in time, space, etc.) The effect can also be accounted for classically,
as discussed for instance by Baym (1998). The full formalization to cover all cases (including
those with no classical counterpart) came in the form of what is now known as Quantum
Optics.

1.2.3 The birth of Quantum Optics

The discovery of correlation in the intensity of light by Hanbury Brown was made with so-called
thermal light, namely from light emitted by a chaotic source (a star; note that Hanbury Brown
was still calling it “coherent light”, in the sense of “spectrally filtered”). At the same time, the
laser was providing a new type of light, and this also came with its own type of correlations.
There was a need to describe all this, especially as the Laser quickly became a fundamental tool
for research, taking a central role in laboratories across disciplines, from Physics to Chemistry,
Biology and even to Medical sciences. The description of the light emitted by a laser was in
principle within the dominion of the theory laid by Dirac as part of the Quantum Theory of Fields.
More to the point, the development of the theory to describe the electromagnetic field generated
by the laser was formulated independently by E. C. George Sudarshan and Roy J. Glauber.
Sudarshan (1963) published a paper where he showed that the light emitted by a laser could
be described both through a semiclassical theory or a fully quantum mechanical one, and
that these two descriptions would be analogous. There, he introduced the so-called “diagonal
representation” and showed that any state of light, classical or quantum, could be expressed in
such a diagonal form:

⇢ =
 
P (↵) ↵Î Í↵ d2↵ , (1.31)

where ⇢ is the density matrix of an arbitrary state of light, P (↵) is a kernel that needs to be
determined, and ↵Î is a coherent state, as defined in Eq. (1.23). Here, ⇢ is diagonal in the
basis of coherent states. A couple of months later, Glauber (1963) published a paper criticizing

Figure 1.11: Sudarshan (1931-2018) and Glauber
(1925-2018) built on the work of Dirac to develop
a theory that describes the electromagnetic field
generated by a laser. Their work was the seed
that later blossomed into the field of quantum
optics. This breakthrough was the main reason
why Glauber was awarded the physics Nobel
prize in 2005 (to the annoyance of Sudarshan).

Sudarshan Glauber
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Sudarshan results and introducing another version of the representation, which he coined the
“P-representation” (as the diagonalization of the state consists in obtaining the P (↵) function),
and it is only recently that it has been re-named as the “Glauber–Sudarshan representation” to
acknowledge Sudarshan’s contribution.

The light emitted by a laser can be represented through a coherent state. Using the Sudarshan-
Glauber formalism, a coherent state with amplitude � can be written as in Eq. (1.31) with P (↵) =
�(↵ * �), where � is the Dirac function. Although coherent states can be expressed through a
quantum formalism, they are of a classical nature, i.e., they can be fully described with the
classical theory of electromagnetism of Maxwell. Nevertheless, these classical states can be
used as a benchmark for the “quantumness” of other states of light. The comparison is made
through the correlations between the photons that compose the light field. Such a comparison
was formalized by Glauber (1963), who used the second quantization of the light field to define
the “Nth-order correlation function”:

g(N)
(t
1
, t
2
,5 , tN ) =

Ía†(t
1
)a†(t

2
)5 a†(tN*1)a†(tN )a(tN )a(tN*1)5 a(t

2
)a(t

1
)Î

Ía†(t
1
)a(t

1
)ÎÍa†(t

2
)a(t

2
)Î5 Ía†(tN )a(tN )Î

, (1.32)

for which we have assumed that the times tk are in increasing order, namely t
1
< t

2
< 5 < tN .

This quantifies the correlation between N photons emitted at those times. The correlation
functions defined in Eq. (1.32) describe, to order N , how close the fluctuations of the field
are to those of a coherent (and classical) field. A particular case of Eq. (1.32) that we will use
repeatedly throughout the Thesis, and which is widely used across Quantum Optics, is the
second-order correlation function, obtained by setting N = 2:

g(2)(t, t+ ⌧) =
Ía†(t)a†(t+ ⌧)a(t+ ⌧)a(t)Î
Ía†(t)a(t)ÎÍa†(t+ ⌧)a(t+ ⌧)Î

, (1.33)

where we have set t
1
= t and t

2
= t+ ⌧, because in the steady-state condition, the correlations

do not depend on the initial time t, but only on the delay ⌧ between photons. Furthermore, the
delayed correlation (1.33) gives us the information regarding the temporal structure with which
the photons are emitted by the system. According to the behaviour of these correlations we can
classify the emission in three categories:

1. If g(2)(⌧) < g(2)(0), the emission is bunched, as the photons are emitted preferably close to
each other.

2. If g(2)(⌧) = 1, the emission is uncorrelated and it behaves like a coherent source of light.

3. If g(2)(⌧) > g(2)(0), the emission is antibunched, as the photons tend to be emitted far
from each other. This scenario is specially relevant, as no classical state can display
antibunching.

As the long time-delay limit of all the second-order correlation function in the steady-state has
to be 1—since the photons emitted with a very large delay between them are not correlated
anymore—sometimes the language is twisted and people refer to g(2)(0) > 1 as bunching and
to g(2)(0) < 1 as antibunching. This classification of quantum correlations, first impulsed by
the insights and observation of Hanbury Brown (g(2)(0) = 2 for thermal light, regardless of its
origin), is the modern definition of optical coherence (no correlation). This will be a central
quantity for the rest of the text so we now proceed to go from the textbook material as reviewed
above to the state-of-the-Art description of these quantities, at which point we will be prepared
to enter into the main results of the Thesis per se.

1.2.4 The observer in Quantum Mechanics

A fundamental aspect of Quantum Mechanics is the fact that the state of an object does not
have a physical reality, until it is measured (see also Hanbury Brown’s comment on page 17).
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The state of light in which photons are emitted by a quantum object is not an exception.
Photon correlations, as introduced by Glauber in Eq. (1.32), being the central quantities in
Quantum Optics, require such a careful consideration of the role of detection. To start with,
these correlations, which arise fully from a theoretical viewpoint, assume two conditions that no
experimental setup can satisfy, namely, when computing the correlations of Eq. (1.32) we assume
that: i) the detector measures the time at which each photon arrives with an infinite precision,
and ii) the detector collects the light from all the emission spectrum of the source. Eberly and
Wódkiewicz (1977) raised this issue early on with regard to the spectrum itself, that is, at the
single-photon level, and concluded that a realistic description of the light field requires the
addition of the physics of the detection process into the theoretical model. This point becomes
increasingly relevant as the source that provides the light is more quantum. The connection
between the quantum system that emits light and what the detector receives is typically done
through the input-output formalism developed by Collet and Gardiner (1984), Gardiner and
Savage (1984), and Yurke (1984), with which one assumes that an operator from the inside
of the cavity (say, an annihilation operator a) is coupled to a continuum of extended modes,
with annihilation operators A! (where the subindex ! indicates the frequency of the mode).
Therefore, using the Heisenberg picture (cf. Section 1.2.1) we can compute the power spectrum
of the output field as a time-dependent correlator that counts the photons of frequency !

1
that

are emitted at some time T
1
:

S(1)
(!

1
, T

1
) = ÍA†

!(T1)A!(T1)Î , (1.34)

which reduces to the well-known Wiener-Khintchine theorem

Sa(!) =
1

⇡
1

na
R

 

ÿ

0

Ía†(0)a(⌧)Îei!⌧ d⌧ . (1.35)

This theorem, however, does not arise from the analysis of an experimental situation, and in
principle, it only applies to stationary processes. In this light, Eberly and Wódkiewicz (1977)
tackled the problem of finding a generalized version of the power spectrum, with the properties
that one would like to have from such a quantity, e.g., the fact that it must be positive, regardless
of the amount of time in which one collects the light (or compute the correlations) and that the
quantity only has physical meaning for times after it has been emitted from the source. Thus,
they provide another expression, to which they refer as the physical spectrum, in which they take
into account the time- and frequency uncertainty simultaneously: they show that this can be
done simply by making a convolution with the (Lorentzian) detector response function, e*�t,
instead of a simple Fourier transform of the time auto-correlation, which then becomes

S(1)
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)
Ía†(t®

1
)a(t®

4
)Î , (1.36)

where �
1

can be interpreted as the linewidth of the detector. Furthermore, Eberly and Wód-
kiewicz (1977) show that the physical spectrum in Eq. (1.36) reduces to the Wiener-Khintchine
theorem in the limit in which the timescale ⌧

0
of the fluctuations over the signal, and the

correlation time ⌧
1

of the emission satisfy the relation ⌧
1
∏ �

*1

1
∏ ⌧

0
.

The extension of including the detection process to photon correlations was impulsed
by Arnoldus and Nienhuis (1984) and Knöll, Weber, and Schafer (1984), in which development
was obtained the expressions allowing for two detectors to have different linewidths �

1
and �

2
.

However, what these expressions had on generality they missed in simplicity, and because
of that, the authors had to restrain actual computations to the simplest case. A few years
later, Knöll and Weber (1986), Knöll, Vogel, and Welsch (1986), and Cresser (1987) arrived to
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the final expression for the correlations as measured by two detectors (and which has a clear
resemblance to its single-detector counterpart shown in Eq. (1.36)):
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, (1.37)

where we have defined T
+

and T
*

to order in time a product of operators with the latest time
on the far left and far right, respectively. This quantity is the density of joint photon detections
at frequencies !

1
and !

2
, at the respective times t

1
and t

2
, with detectors of width �

1
and �

2
.

Both the physical spectrum Eq. (1.36) and its two-photon counterpart (1.37) can be interpreted
in two equivalent ways: either as the result of placing detectors (one and two respectively) with a
given integration time, or as filtering the output with an interference filter (i.e., whose lineshape
is Lorentzian), the output of which is left for another detector (ideal and infinite-bandwidth,
this time). These two pictures are actually equivalent since the detector is performing a filtering
and, conversely, the filtering still requires ultimately a detector (this time an ideal and infinite
broad-band one). This is therefore mainly a question of terminology, and throughout the text,
we will be using either one or the other types of language (i.e., a filter, or a detector). Of
course, one can also consider putting physical detectors post-filtering, or cascading filters, or
considering still other configurations. There too, different physical pictures would be described
with the same formalism.

What equations (1.36) and (1.37) show is that the resolution in the time at which the photons
are emitted is linked, through the Heisenberg uncertainty principle, to the resolution in the
frequency of the photons. Such a limitation does not forbid to observe an object whose photons
display a perfect antibunching, or to observe a perfectly monochromatic source of light. What it
implies, however, is that one cannot observe these two properties simultaneously. One relevant
illustration of Hanbury Brown’s modern Physics claim of “what photons are” as opposed to
“how they behave” is the recent report of Nguyen et al. (2011) and of Matthiesen, Vamivakas,
and Atatüre (2012) who claimed to have observed a source of single photons with an ultra-
narrow spectral profile. The idea behind it is simple: consider the resonant excitation of a
two-level system with a laser. In the limit in which the intensity of the laser is weak, the
photoluminescence of the two-level system is given by two components: a Lorentzian with
a width given by the decay rate of the two-level system, and a narrow line centered at the
frequency of the two-level system. The former comes from the photons that are absorbed and
later re-emitted by the two-level system, while the latter is the contribution of the photons
from the laser that are merely scattered by the two-level system. If the intensity of the driving
is weak enough, the emission of the two-level system is dominated by the scattered photons,
and one could argue that the source is spectrally narrow. On the other hand, given that the
emitter is a two-level system, the emitted photons display perfect antibunching. Thus, one has
a monochromatic source of single photons. However, in both papers the observation of the
emission spectrum and of the photon correlations were performed in different experiments and
even using different setups. In chapter 3, I will show how a theory of this effect which includes
self-consistently the effect of detection leads us to the opposite conclusion that only one or the
other characteristic (antibunching or narrow linewidth) can be obtained. Actually, using the
homodyning concept introduced by Vogel (1995), I will show how such an effect can be realized
after all, but with the need of including the impact of the detection.
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1.2.5 Frequency-resolved photon correlations

From the two-photon physical spectrum (1.37) follows straightforwardly the frequency-resolved
second-order correlation function, obtained by normalizing it with the square of Eq. (1.36):
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. (1.38)

This is the counterpart of Eq. (1.32) but for photons filtered beforehand, as sketched in Fig. 1.12.
While such a configuration is a trivial step experimentally, this is a daunting task theoretically.
To compute the correlations as in Eq. (1.38) one needs to consider all the possible time-ordering
domains, and once these have been selected, one has to perform six integrals. Naturally, such
a task becomes harder as the temporal structure of the system described by the annihilation
operators a becomes more involved. Furthermore, although Eq. (1.37) can be easily generalized
to account for N photons from a conceptual point of view, it becomes intractable to even write
down the expression to compute, and its actual computation becomes hopelessly complicated
even for the simplest problems, already at the three-photon level.

Few years ago, del Valle et al. (2012) found a simple way of computing the N-photon
correlations (not merely to second order), without the huge effort of computing cumbersome
integrals after considering multiple time orderings and integration domains. The method
consists of including the description of the detectors directly in the master equation governing
the dynamics of the quantum system under study, with a coupling of the type:

HI = "(a†⇠ + ⇠†a) , (1.39)

where a and ⇠ are the annihilation operators of the quantum system and the detector, respectively.
To solve the already mentioned reversibility problem between a source and its target (a detector),
del Valle et al. (2012) ultimately take the limit " ô 0 of the system. It will become clear shortly
why in their case this limit can be taken. Considering the free energy of the detector—given by
H⇠ = !⇠⇠†⇠, thus setting the central frequency at which the detector collects the light—the full
description of the system plus detector is then given by the master equation

)t⇢ = i[⇢,Ha +H⇠ +HI ] +
�a
2
La⇢+

�⇠

2
L⇠⇢ . (1.40)

Here Ha is the Hamiltonian governing the internal dynamics of the system, which has a decay
rate given by �a, HI is as given in Eq. (1.39), and �⇠ is the linewidth of the detector. The
generalization to N detectors, all of them with different frequencies, is then straightforward:
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k=1
�⇠kL⇠k⇢ , (1.41)

Figure 1.12: Scheme for the measurement of
frequency-resolved photon correlations: the sig-
nal (S) is directed towards a beam splitter (BS),
after which the pair of beams is passed through
two filters (F) with possibly different spectral
linewidths. Then, the filtered emission goes to
the detectors (D), where the signal is collected
and the correlations are computed. The figure
is taken from Carlos Sánchez Muñoz (2016)’s
doctoral thesis.
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where �⇠k is the linewidth of the kth detector, which collects the light at the frequency !⇠k .
Therefore, the Nth-order frequency-filtered correlation function of the system is given simply by

g(N)
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, (1.42)

where we have assumed that the times tk are in increasing order, namely t
1
< t

2
< 5 < tN .

This generalizes the photon correlations defined by Glauber (1963) and shown in Eq. (1.32). In
particular, the zero-delay Nth-order frequency-filtered autocorrelation (for which we use only
one detector with linewidth �⇠ and centered at !⇠) reduces to

g(N)

�⇠
(!⇠) =

Í⇠†N⇠NÎ

Í⇠†⇠ÎN
. (1.43)

Interestingly, since both the numerator and denominator of the right-hand side of Eqs. (1.42)–
(1.43) vanish to the same order in ", one can obtain the exact results for the left-hand side of these
equations as the limit "ô 0. In this way, the frequency-filtered time-resolved photon correlations
can be obtained bypassing the cascaded formalism of Section 1.2.1.2. On the other hand, if one
is interested in, for instance, the filtered average occupation of the system, one would obtain
zero as these quantities are directly proportional to the coupling strength, which is infinitesimal.
These frequency-filtered observables are also of experimental interest. They are required to
measure, e.g., the quantum state of the system, that I have defined with Zubizarreta Casalengua
et al. (2017), where the unnormalized correlations are used to obtain the probability distribution
that the excitations follow within the system. To avoid getting trivial results stemming from the
vanishing coupling, we need to develop a new theory, which is one of the results presented
in this Thesis. Namely, one needs to turn to the Gardiner and Parkins (1994)’s formalism of
cascaded driving presented in Section 1.2.1.2, but upgrading it with the frequency degree of
freedom. Although these two approaches to obtain the frequency-filtered correlations come from
different perspectives, I will show in Chapter 2 that the two methods are completely equivalent,
as far as the correlators are concerned, and the only distinction between them is a technical
one: when using the formalism of cascaded driving, the population of the detector can grow
arbitrarily, and thus the Hilbert space needs to be truncated adequately. Another qualitative
distinction arises when one needs to consider not correlators but observables. The steady-state
solutions of most quantum optical systems can be tackled using the master equation formalism
that we introduced in Section 1.2.1 and using del Valle et al. (2012)’s theory of frequency-
resolved photon-correlations to include the frequency degree of freedom. However, the results
obtained in this way correspond to a statistical—or, similarly, to a stochastic—average, and the
observables correspond to what one would obtain when repeating the measurement enough
times. However, looking at such types of averages blurs the information about the individual
realizations, which we may need to study, e.g., the temporal structure between photons with
different frequencies. As it should be useful to go beyond mean values and get access to time
series for a variety of purposes, one could turn to the Quantum Monte Carlo technique applied
to color-resolved photons. Ceperley and Alder (1986) developed a quantum version of the
classical method, and later on, Mølmer, Castin, and Dalibard (1993) modified it to simulate the
dynamics of a quantum object through the evolution of its wavefunction. In Chapter 2, I will
indeed upgrade and apply the quantum-jump Monte Carlo technique to the case of filtered
emission, that is to say, as applied to a stream of photons going through an interference (i.e.,
Lorentzian) filter. This can turn a simple system into a versatile, tunable quantum source, with
applications such as sources with variable statistics, as demonstrated by Dory et al. (2017),
or quantum spectroscopy in the schemes proposed by Mukamel and Dorfman (2015) and
Kazimierczuk et al. (2015), or by myself, as I will discuss in detail in Chapter 7.
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1.2.6 Resonance Fluorescence & the Mollow triplet

The concepts introduced above can be ideally illustrated with a particular case which is both
simple and important, namely, resonance fluorescence. From a practical point of view, resonance
fluorescence is the result of coherent excitation impinging onto a two-level system. Since the
early works of Wu, Grove, and Ezekiel (1975), Kimble and Mandel (1976), Agarwal (1976),
Kimble, Dagenais, and Mandel (1977), Apanasevich and Kilin (1977), Cohen-Tannoudji and
Reynaud (1977), Groove, Wu, and Ezekial (1977), Jakeman et al. (1977), and Arnoldus and
Nienhuis (1984), a large breadth of papers have been published studying various aspects of it.
In fact, the literature is so large, and the topic so fundamental, that it has long been textbook
material (cf. the book of Allen and Eberly (1987)). Using the master equation formalism
introduced in Section 1.2.1, the equation governing the dynamics of a coherently driven two-
level system—which energy levels can be noted as gÎ and eÎ for its ground and excited states,
respectively—with annihilation operator � = gÎ Íe, is:

)t⇢ = i[⇢,H�] +
��
2
L�⇢ , (1.44)

where �� is the rate at which the two-level system emits photons spontaneously. The Hamilto-
nian H� in Eq. (1.44) is in the rotating frame, and is given by

H� = (!� *!L
)�†� +⌦�(�† + �) , (1.45)

where !� is the natural frequency of the two-level system, which is driven by laser of fre-
quency !

L
and intensity ⌦� . In the steady-state, when the left-hand side of Eq. (1.44) is equal

to zero, the observables of the two-level system become simple. For instance, its population is
given by

n� =

4⌦
2

�

�2� + 4�2

� + 8⌦2

�
, (1.46)

where �� = !� *!L
is the detuning between the laser and the two-level system. Note that the

population of the two-level system has an upper bound, 1_2, which means that the coherent
excitation does not yield a population inversion in the two-level system. The upper limit is
only reached when the laser and the two-level system are in resonance, and the rate at which
the laser excites the two-level system is much larger than its decay rate: this induces Rabi
oscillations in the two-level system, which average out as a mean population of 1_2.

Other observables vary depending on the strength of the driving as compared to the emission
rate of the two-level system. When the driving is very weak, namely ⌦�_�� ~ 1, which is also

Reynaud NienhuisKilin

Figure 1.13: Some of the pioneers of the theory of frequency-resolved photon correlations, in particular
from resonance fluorescence. With their respective co-authors and over decades, they established the
correct theory providing increasingly accurate descriptions of the correlations in the light emitted from
the various peaks of the Mollow triplet.
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commonly referred to as the Heitler (1944) regime, the emission spectrum (given by Eq. (1.35)
replacing the operator a by � and assuming !� = !

L
= 0) becomes

S�(!) = (1*K
2
)�(!) +K

2

1

⇡
��_2

(��_2)2 +!2
, (1.47)

where K
2
= 8⌦

2

�_�
2

� and � is the Dirac delta function. The emission spectrum in Eq. (1.47) is
simply the superposition of a delta peak centered at the frequency of the laser—originating from
the photons that come from the laser and are elastically scattered by the two-level system—and a
Lorentzian peak of width ��—which stems from the luminescence (fluorescence) of the two-level
system. The coexistence of these two contributions is the basis for our theory of a sub-natural
linewidth single photon source, which I will discuss in detail in Chapter 3. Furthermore, the
second-order correlation function of the photons, as defined in Eq. (1.33), has a simple form

g(2)� (⌧) =
�

1* e*��⌧_2
�2 , (1.48)

which displays a perfect anticorrelation between photons emitted simultaneously.
The opposite regime, where the intensity of the laser is commensurable with the decay rate

of the two-level system, brings us into the so-called Mollow (1969) regime. There, the emission
spectrum is the celebrated Mollow triplet, shown in Fig. 1.14(a) and given by
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where we have used the notation �2 = 64⌦
2

� * �
2

� . The spectrum is now composed of four terms:
the first one is still the contribution from the elastically scattered photons, which yields a Dirac
delta. The other three terms correspond to Lorentzians that form a triplet, which received the
name of Mollow (1969), who was the first to find its correct analytical expression. The central
peak of the triplet has a linewidth of �� , while the two lateral peaks have a linewidth of 3��_2.
Moreover, the intensity of the central peak is twice the intensity of either lateral peak. This can
be easily understood in terms of the dressed-atom picture proposed by Cohen-Tannoudji and
Reynaud (1979), Reynaud (1983), and Dalibard and Reynaud (1983): In the limit ⌦� ∏ �� , the
energy levels of the two-level system become dressed by the laser, thus forming an infinite ladder

(a)

0 2 4-2-4
0.0
0.1
0.2
0.3

0 5 10-5-10
0.0
0.5
1.0
1.5
2.0 (b)

Figure 1.14: Properties of resonance fluorescence. (a) The emission spectrum of the two-level system in
the Mollow regime, highlighting the contribution from each term of Eq. (1.49) with a different color.
(b) Second-order correlation function of the emission from a two-level system in the Heitler regime (blue
line, obtained in the limit ⌦� ô 0 and showing no oscillations) and from the Mollow triplet (orange line,
obtained for ⌦� = 2��).



26 preliminaries

of excitation manifolds. Each manifold consists of a pair of states ±Î, formed by a superposition
of the bare states g, n+ 1Î and e, nÎ, where “g” and “e” correspond to the “ground” and
“excited” states of the two-level system. Then, both transitions +Î ô +Î and *Î ô *Î have
the same energy and constitute the emission from the central peak. Similarly, the lateral peaks
are the result from the transitions +Î ô *Î and *Î ô +Î, respectively. This in shown in
Fig. 1.15(c).

The second-order correlations reflect the Rabi oscillations induced by the laser, and become
as follows:

g(2)� (⌧) = 1* e*3��⌧_4
4

cos

0

�⌧
4

1

+
3��
�

sin

0

�⌧
4

15

. (1.50)

The photon correlation in the Heitler regime (1.48) is a particular case of Eq. (1.50), recovered
in the limit ⌦� ô 0. These two cases are shown in Fig. 1.14(b). Note that the expression in
Eq. (1.50) describes the correlations between photon pairs without specifying the frequency
at which these photons are emitted. The Mollow triplet is, however, a perfect example where
one would naturally inquire about the correlations between photons emitted from each of the
three peaks, as well as about the cross-correlations between photons emitted from different
peaks. In fact, measuring frequency-resolved correlations from quantum systems has been
pursued for almost three decades, starting with Apanasevich and Kilin (1977)’s theoretical
prediction and Aspect et al. (1980)’s observation that the photons coming from the peaks of
the Mollow triplet displayed strong correlations. However, despite the huge efforts of well
renowned theoreticians, in particular from Cohen-Tannoudji and Reynaud (1979), Reynaud
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Figure 1.15: Spectral lineshape and two-photon spectrum (2PS, density plots) of a two-level system,
showing the correlations between photon pairs with all the combination of frequencies. (a) The incoherently
driven two-level system emits photons with a Lorentzian profile, and the 2PS has a simple structure: pairs
of photons with the same frequency—located on the diagonal of the density plot—display higher values
(even bunching) due to their indistinguishability. (b) The Mollow triplet (spectral lineshape) has a richer
structure in its two-photon spectrum, that rises from all the different transitions between manifolds on the
ladder of dressed states (right). The one- (c) and two-photon (d) transitions in the ladder are indicated by
arrows of corresponding colors. Of particular interest, the two-photon “leapfrog processes” indicated by
the red, blue and yellow arrows give rise to strong bunching antidiagonals. In both cases the linewidth of
the filter is set to � = �� . The results in (a) are obtained with an incoherent driving rate P� = �� , whereas
the results in (b) are obtained by driving the 2LS resonantly with the laser pumping rate ⌦� = 5�� . The
Rabi frequency, ⌦+ (which in the case !� = !L is equal to 2⌦�), gives the splitting in each manifold and
correspondingly, the position of the side peaks of the Mollow triplet. The energy of one laser-photon, !L,
is taken as a reference for the variables.
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(1983), Dalibard and Reynaud (1983), and Arnoldus and Nienhuis (1984), and culminating with
the work of Arnoldus and Nienhuis (1986), Nienhuis (1993), and Joosten and Nienhuis (2000)
who understood the problem in fairly comprehensive details, taking into account the filter’s
linewidth and effects of interferences and time-ordering, the description remained partial and
approximate, namely, it focused on the spectral peaks, which correspond to the real transitions—
in the sense of transitions that arise between the dressed states of the Mollow triplet. Here lies
the power of the theory developed by del Valle et al. (2012): since the frequency at which the
detectors collect the light is completely free, it gives access to the full underlying structure of
the quantum system, that is revealed when mapping correlations at all frequencies. We refer to
this structure as the two-photon spectrum (2PS). Already with the most fundamental quantum
object—a two-level system—del Valle (2013) and González-Tudela et al. (2013) showed that the
emitted photons are strongly correlated when the frequency is taken into account, and Sánchez
Muñoz et al. (2014b) further demonstrated that such correlations violate Cauchy-Schwarz
inequalities. The 2PS of the two-level system driven incoherently is fairly simple, as shown in
Fig. 1.15(a): The autocorrelation of the photons emitted at the same frequency, which lie on the
principal diagonal of the figure, tend to be bunched (approaching g(2)

�
ô 2 in the limit �ô 0)

and the intensity of the bunching increases as the frequency gets farther away from the central
frequency of the emission. González-Tudela et al. (2013) explained how this is the result of the
photon indistinguishability, rather than from any internal structure of the system, which means
that it is present in every 2PS. This is in agreement with Armstrong (1966)’s early description
of the effect of spectral filtering on coherent light, which was subsequently demonstrated
experimentally by Centeno Neelen et al. (1992). Outside of the diagonal, the cross-correlations
display the expected antibunching (due to the fermionic character of the two-level system),
passing through uncorrelated emission in the transition to the indistinguishability bunching.
Changing the excitation to a coherent source with enough strength to reach the Mollow (1969)
triplet regime, we observe a richer structure blossom, shown in Fig. 1.15(b): in this case, the
indistinguishability bunching is overcome by the strong correlations resulting from photon pairs
which emission is aided by a virtual transition that “jumps over” one manifold of excitation
(one pair of energy levels, labelled as ±Î), as the ones shown in red, blue and yellow arrows on
Fig. 1.15(d). The photons emitted through these virtual processes satisfy the equation

É!
1
+ É!

2
= 2�⌦� for � = {*1, 0, 1} , (1.51)

where É!i = (!i * !L
), and they are highly correlated, as shown by the deep red lines on the

antidiagonals marked by the red (� = *1), blue (� = 0) and yellow (� = 1) arrows in the
density plot of Fig. 1.15(b). In a process akin to purification, the price to pay for enhancing these
correlations is the reduction of the emission rate of the photons satisfying Eq. (1.51), with the
exception of the photons emitted in resonance to the two-level system. This places the Mollow
triplet—one of the most fundamental yet richest quantum systems—as a versatile source of
quantum light, able to provide photons with statistics ranging from perfectly sub-Poissonian
(that is, with g(2)a (0) = 0) to super-Poissonian (with g(2)a (0) ∏ 2) passing by the statistics of a
coherent source (for which g(2)a = 1 regardless of time). The following chapters are devoted to
using this versatility to excite other quantum systems.

1.3 sources & targets

This Thesis is about Exciting with Quantum Light. At such it requires to worry about the
Exciting source on the one hand and about the Excited target on the other hand. One natural
question is whether it is advantageous to excite objects with the emission of quantum sources
instead of classical ones. This problem is as important as it is fundamental, as it would require
to revisit every regime of excitation that has been considered with classical light—like the
incoherent light emitted by a thermal reservoir or the coherent light emitted by a laser—applied
to an even larger range of optical targets. Since using every possible quantum source and looking
at its effect on every possible system is impractical, we will focus on the most fundamental cases.
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Namely, for the source of quantum light, we will consider the emission of a two-level system,
itself being driven into the Mollow (1969) regime. The different types of correlations in the
various frequency windows introduced above and further discussed in Chapter 4, will make this
fundamental case largely sufficient on its own to investigate these questions at a fundamental
level. Even variations, introduced below, arise as particular cases or straightforward extensions.
For the targets of the quantum excitation, we will first consider the most simple yet fundamental
objects: a bosonic and a fermionic field, as well as the result of their strong coupling.

1.3.1 Single and Multi-photon sources

At this stage of technology, quantum light is foremost the one provided by single-photon sources.
In fact, their long coherence time and lightweight make photons very appealing to implement
logical quantum gates, which would then lead to the development of an universal quantum
computer. However, to get to that point, it is paramount to be able to generate and manipulate
arbitrary quantum states of light, and the first step is the generation of the one-photon Fock
state 1Î. Dynamically, this implies that we need a source of light with a long list of properties.
Among them, one would like that the probability that the source emits more than one photon
at any given time is zero (which implies a complete suppression of the second-order correlation
function, given in Eq. (1.33)), that any two photons emitted by the source are indistinguishable
(which can be measured in a Hong, Ou, and Mandel (1987) experiment), and that the emission
takes place in a periodic way. While computing these quantities is straightforward, one should
take into account the consideration about detection discussed previously: the properties of the
emitted photons only become real when they are observed, either by a detector or by another
quantum object. Thus, the correlation between photons, their indistinguishability and all other
properties related to the temporal structure of the emission, need to be considered in the light
of the Theory of frequency-filtered and time-resolved correlations of del Valle et al. (2012). In
Chapter 3, I will discuss in detail how indeed the photon correlations observed by an object
with a finite temporal or spectral resolution are affected.

The next step towards the realization of arbitrary states of light is the implementation of
sources able to generate Fock states of N photons. For instance one needs such an N-photon
source to test for quantum supremacy and performing experiments similar to the Boson
Sampling, proposed by Aaronson and Arkhipov (2011) and later measured with few photons
by Broome et al. (2013), Crespi et al. (2013), Spring et al. (2013), Tillmann et al. (2013), and Loredo
et al. (2017). In a laboratory, a source of N photons can be built from single-photon sources,
using techniques such as multiplexing: a stream of single photons—emitted, for instance,
by a nonlinear crystal through spontaneous parametric downconversion or by a two-level
system driven with pulsed laser—is made to enter an optical circuit to collect the individual
photons and keep them organized in time. Pittman, Jacobs, and Franson (2002) first introduced
this technique to generate a source of single photons on “pseudodemand”, and later Kaneda
et al. (2015) demonstrated that the technique could be used to obtain a source of heralded
single photons. Increasing the number of photons, however, also increases the complexity,

Figure 1.16: Artistic representation
of the N-photon emitter proposed
by Sánchez Muñoz et al. (2014a). The
light of a laser is sent onto a quantum
dot embedded in a microcavity. When
the frequency of the cavity is detuned
by the right amount from the quantum
dot, the emission of the system is given
by bundles of N photons (in this case
N = 4).
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and generating a source of N photons becomes a tedious task. Conversely, one can turn to
more exotic sources that provide a large but fixed number of photons without requiring any
sophisticated optical engineering. Sánchez Muñoz et al. (2014a) showed that the emission from
a two-level system driven in the Mollow triplet regime can provide such an N-photon source,
sketched in Fig. 1.16, at an elementary—and therefore robust—level. Keeping the dressed-atom
picture in mind, in which the energy levels of the driven two-level system are given by an
infinite ladder of excitations (cf. Fig. 1.15), and strongly coupling a cavity in resonance to the
N-photon transition, jumping over N * 1 intermediate manifolds of excitation, one finds that
the emission of the cavity indeed consists predominantly of bundles of N photons.

In chapter 4, I will build on the source of N-photon bundles and study the ways in which the
emission can be obtained in a more general way. Considering the correlations between single
photons at frequency !

1
and bundles of photons with frequency !

2
, and looking for the pair of

frequencies for which the zero-delay correlations are the strongest, will put the foundation for a
new class of heralded N-photon sources.

1.3.2 Bosons, Fermions and Polaritons

After discussing the sources of quantum light and how their properties vary when the observer
of light has a finite temporal and spectral resolution, we will move on to study the effects
on optical targets. In Chapter 5, I will focus on the bosonic targets, modelled as a harmonic
oscillator, and in Chapter 6, I will tackle the excitation of a fermionic target, modelled as a
two-level system. In Chapter 8, I will change the source of the quantum excitation from the
Mollow triplet to the source of N-photon bundles of Sánchez Muñoz et al. (2014a) and to a
two-level system operating in a regime of pulsed excitation. I will use the emission of these
two sources, and study their effect on both a bosonic and a fermionic field, thus becoming the
counterparts of Chapters 5 and 6. The bosonic and fermionic targets being so fundamental,
they need little more introduction. Maybe the next optical target to consider in terms of how
fundamental it is, after bosons and fermions, would be the so-called polaritons, which are a
quantum superposition of boson with i) fermions (Jaynes-Cummings physics) or ii) weakly
interacting bosons. The latter case will play an important part in this Thesis following my
collaboration with one of the leading experimental groups working with these objects, which
has pioneered some studies of exciting polaritons with quantum light following my (López
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Figure 1.17: A typical polariton dispersion. (a) Luminescence spectrum in momentum space, as observed
experimentally, with the bright regions corresponding to zones where light is emitted. (b) Dispersion
relation as obtained from the Hamiltonian describing the polaritons. For the experimental image the Rabi
splitting was =g = 8.7meV.
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Carreño et al. (2015)) theoretical proposal in that direction. This will be discussed in depth in
Chapter 7.

The first experimental observation of polaritons was made by Weisbuch et al. (1992) with a
cavity containing seven quantum wells, displaying an anticrossing, commonly referred to as
Rabi splitting, by shifting the energy of the driving laser. In the observation, it was clear that the
energies at which the light was emitted from the microcavity were not those of the bare cavity
nor the bare excitons, but rather at two different frequencies, which are now referred to as the
lower and upper polariton branches. A typical dispersion relation from a polariton system is shown
in Fig. 1.17: panel (a) shows the real image as observed in the laboratory, with the bright regions
indicating the emission of light; panel (b) shows the breakdown of the energies that play a role
in the figure, with the bare modes (the energy of the photonic mode and of the excitons) in
dashed lines, and the polariton branches in solid lines. The energy difference between the upper
and lower polariton branches at normal incidence (k = 0), shown in panel (b) as =g is given
by the strength of the Rabi coupling, i.e., the energy with which the photons and the excitons
are bounded. Theoretically, polaritons can be seen simply as coupled oscillators when exciting
a single mode or as coupled fields when involving a significant spread in momentum space.
They have enjoyed a considerable activity due to their strong interactions at high densities, in
which case they opened new directions in fundamental aspects of condensed-matter optics
including Bose-Einstein condensation, superfluidity and even superconductivity. For a more
detailed coverage, I refer to Kavokin et al. (2017)’s textbook on the topic. While the upper and
lower polariton branches have the same relevance in terms of energy, the upper branch suffers
much more from dephasing, which reduces the lifetime of the upper polaritons. This has been
studied in great details by Dominici et al. (2014), in a paper where I contributed a quantum
optical theory of polaritons using the formalism introduced previously. Therefore, most of the
experiments related to polaritons are performed using the light emitted from the lower polariton
branch. In Chapter 7, I will use the Mollow triplet and the versatility of the statistics from
the light emitted at various frequency regions of the triplet to propose an implementation of
quantum spectroscopy to tackle the most important question of this field (such as determining
the strength of the polariton-polariton interaction).

1.4 summary of the contents & published papers

In summary, the rest of the Thesis is organized as follows:

• In chapter 2, I will discuss the results of López Carreño, del Valle, and Laussy (2018),
in which I put together the formalism of Cascaded systems, developed by Gardiner
(1993) and Carmichael (1993b), and the Theory of Frequency-Filtered and Time-Resolved
Correlations, developed by del Valle et al. (2012). Thus, I adapt the Quantum Monte
Carlo algorithm of Mølmer, Castin, and Dalibard (1993) and Mølmer and Castin (1996)
to include the effect of the detection on the statistics of the photons emitted by quantum
systems.

• In chapter 3, I will discuss the results of López Carreño et al. (2016a), López Carreño et al.
(2018), and López Carreño et al. (2019), in which I consider the sources of single photons
in the context of frequency-resolved correlations. Given that the photon antibunching
is spoiled when the process of observation is taken into account, I will consider several
criteria to rank sources of light, according to how well they maintain their single-photon
character after the emission is observed.

• In chapter 4, I will discuss the results of López Carreño, del Valle, and Laussy (2017),
in which I turn to sources of N photons following the steps of Sánchez Muñoz et al.
(2014a). Using the emission from resonance fluorescence when it is filtered at the adequate
frequencies, I will propose a mechanism that allows us to develop a source in which the
emission of a bundle of N photons is heralded by a single photon at another frequency.
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In chapters 5–7, I will use the light emitted from a two-level system driven itself in the so-
called Mollow (1969) regime, which González-Tudela et al. (2013) have found to have a rich
structure in its temporal correlations. I will take advantage of this structure to broaden the
limits of the quantum states that can be reached by three types of systems:

• In chapter 5, I will discuss the results from López Carreño and Laussy (2016), where I
consider the excitation of a harmonic oscillator, which could be interpreted as photons,
polaritons or even plasmons. Studying the excitation of the harmonic oscillator, I will
chart the regions of the Hilbert space that are accessible only through the excitation with
Quantum Light. In particular, I will disprove the commonly-used criterion, g(2) < 1_2, to
identify single-photon sources, showing that there is a myriad of states of the harmonic
oscillator that satisfy such a criterion while having an average occupation larger than one.

• In chapter 6, I will discuss the results from López Carreño et al. (2016b), where I consider
the excitation of the other fundamental type of particles: Fermions. As an archetype of
it, I will study the excitation of a two-level system, which can be realized in a large
variety of physical systems, including cold atoms, ions, semiconductor quantum dots,
superconducting qubits, among others.

• In chapter 7, I will first discuss the results from López Carreño et al. (2015), where a system
of exciton-polaritons is probed by the Mollow triplet, and show as an implementation of
quantum spectroscopy how one can extract the polariton-polariton interaction strength.
Then, I will discuss the results from Cuevas et al. (2018), in which we used a pair of
entangled photons to excite a system of exciton-polaritons. These results were obtained
by the laboratory of Dr. Daniele Sanvitto at the CNR-NANOTEC institute in Lecce, and
provided the first hard evidence of the quantization of the polariton field, as well as the
observation of the effect of the the polariton-polariton interaction at the single-particle
level.

• In chapter 8, I change the source of Quantum Light, and instead of a two-level system,
I consider the emitter of N-photon bundles proposed by Sánchez Muñoz et al. (2014a).
Since the bundler is a complex device to simulate in the first place, I first address the
problem of how to efficiently simulate it, and develop to that effect various toy-models
that behave as expected from the original device, demonstrating very high purity of 3
and 4 photon emission. I describe the effect of driving both an harmonic oscillator and a
two-level system with N-photon light, finding in particular interesting variations from the
Mollow triplet. I show that two-photon correlations from a two-level system driven by a
three-photon exhibit interesting leapfrog-type structures, which similarity or originality
from those generated under classical excitations remain to be investigated.

• In chapter 9, I give an overview of the main results of this Thesis, draw some general
conclusions and provide some perspectives, with a succinct description of follow-up
works currently in progress.

These results gave rise to the following publications:

1. Ultrafast Control and Rabi Oscillations of Polaritons
L. Dominici, D. Colas, J. P. Restrepo Cuartas, M. de Giorgi, D. Ballarini, G. Guirales,
J. C. López Carreño, A. Bramati, G. Gigli, E. del Valle, F. P. Laussy & D. Sanvitto,
Physical Review Letters 113, 226401 (2014)

2. Exciting Polaritons with Quantum Light
J. C. López Carreño, C. Sánchez Muñoz, D. Sanvitto, E. del Valle & F. P. Laussy
Physical Review Letters 115, 196402 (2015)
Selected as “Editor’s Suggestion”

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.226401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.196402
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3. Excitation with quantum light. I. Exciting a harmonic oscillator
J. C. López Carreño & F. P. Laussy
Physical Review A 94, 063825 (2016)
Featured in Physics

4. Excitation with quantum light. II. Exciting a two-level system
J. C. López Carreño, C. Sánchez Muñoz, E. del Valle & F. P. Laussy
Physical Review A 94, 063826 (2016)
Featured in Physics

5. Criterion for Single Photon Sources
J. C. López Carreño, E. Zubizarreta Casalengua, E. del Valle & F. P. Laussy
ArXiv:1610.06126 (2016)

6. Structure of the harmonic oscillator in the space of n-particle Glauber correla-
tors
E. Zubizarreta Casalengua, J. C. López Carreño, E. del Valle & F. P. Laussy
Journal of Mathematical Physics 58, 062109 (2017)

7. Photon Correlations from the Mollow Triplet
J. C. López Carreño, E. del Valle & F. P. Laussy
Laser and Photonics Reviews 11, 1700090 (2017)

8. First observation of the quantized exciton-polariton field and effect of interac-
tions on a single polariton
Á. Cuevas, J. C. López Carreño, B. Silva, M. de Giorgi, C. Sánchez Muñoz, A. Fieramosca,
D. G. Suárez Forero, F. Cardano, L. Marrucci, V. Tasco, G. Biasiol, E. del Valle, L. Dominici,
D. Ballarini, P. Mataloni, F. P. Laussy, F. Sciarrino & D. Sanvitto
Science Advances 4, eaao6814 (2018)

9. Frequency-resolved Monte Carlo
J. C. López Carreño, E. del Valle & F. P. Laussy
Scientific Reports 8, 6975 (2018)

10. Joint subnatural-linewidth and single-photon emission from resonance fluores-
cence
J. C. López Carreño, E. Zubizarreta Casalengua, F. P. Laussy & E. del Valle
Quantum Science and Technology 3, 045001 (2018)

11. Impact of detuning and dephasing on a laser-corrected subnatural-linewidth
single-photon source
J. C. López Carreño, E. Zubizarreta Casalengua, F. P. Laussy & E. del Valle
Journal of Physics B: Atomic, Molecular and Optical Physics 52, 035504 (2019)

12. Quasichiral interactions between Quantum Emitters at the Nanoscale
C. A. Downning, J. C. López Carreño, F. P. Laussy, E. del Valle & A. I. Fernández-
Domínguez
Physical Review Letters 122, 057401 (2019)

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.063825
https://physics.aps.org/synopsis-for/10.1103/PhysRevA.94.063825
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.063826
https://physics.aps.org/synopsis-for/10.1103/PhysRevA.94.063825
https://arxiv.org/abs/1609.01244
http://aip.scitation.org/doi/full/10.1063/1.4987023
http://aip.scitation.org/doi/full/10.1063/1.4987023
http://onlinelibrary.wiley.com/doi/10.1002/lpor.201700090/full
http://advances.sciencemag.org/content/4/4/eaao6814
http://advances.sciencemag.org/content/4/4/eaao6814
https://www.nature.com/articles/s41598-018-24975-y
http://iopscience.iop.org/article/10.1088/2058-9565/aacfbe
http://iopscience.iop.org/article/10.1088/2058-9565/aacfbe
http://iopscience.iop.org/article/10.1088/1361-6455/aaf68d
http://iopscience.iop.org/article/10.1088/1361-6455/aaf68d
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.057401
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F R E Q U E N C Y- R E S O LV E D M O N T E C A R L O

Wiener wrote in his autobiography that he had ideas similar
to the ones I later proposed as the Monte Carlo method.

He says vaguely that he found no response when he talked
to someone and so dropped the matter.

— Stanisław Ulam
Adventures of a Mathematician

2.1 classical monte carlo

Ulam (1991) wrote in his autobiography on the genesis of the technique at the core of this
chapter:

The idea for what was later called the Monte Carlo method occurred to me when
I was playing solitaire during my illness. I noticed that it may be much more
practical to get an idea of the probability of the successful outcome of a solitaire
game (like Canfield or some other where the skill of the player is not important) by
laying down the cards, or experimenting with the process and merely noticing what
proportion comes out successfully, rather than to try to compute all the combinatorial
possibilities which are an exponentially increasing number so great that, except in
very elementary cases, there is no way to estimate it. This is intellectually surprising,
and if not exactly humiliating, it gives one a feeling of modesty about the limits
of rational or traditional thinking. In a sufficiently complicated problem, actual
sampling is better than an examination of all the chains of possibilities.

Since then, the Monte Carlo method has been used in a large variety of topics to tackle diverse
problems. For instance, Rogers (2006) has reviewed the role that the method has had in the
research on medical physics, such as the impact that radiation has on tissues. The academic
efforts in this topic led to the development of the software GEANT4, that allows the simulation
of the passage of particles through matter and which is routinely used at CERN to test the
performance of gamma- and X-ray detectors. Badano and Kanicki (2001) and Mesta et al. (2013)
have used the Monte Carlo method to analyze the structure of organic materials to make them
work as light-emitting diodes. Furthermore, Glasserman (1994) has laid the prospects that the
Monte Carlo method has in finance, such as the analysis and prediction of financial time series,
which is particularly relevant for the stock markets. While the list of applications could go
on for pages, I now focus to the Quantum Monte Carlo methods, which I will show have the
potential to describe a large breadth of quantum optical problems.

2.2 quantum monte carlo

If there is a field of Science that involves "exponentially growing numbers" that can only be
accessed through "sampling", this is indeed quantum physics. The computational complexity,
also combinatorial in nature (everything can happen), is at the core of the theory. Furthermore,
sampling is inescapable in the real world, where one can only perform a finite amount of
measurements (or observations) that will turn the deterministic but abstract wavefunction
into a probability distribution function, of which the end user only gets one result at a time.
Theorists have the luxury to access perfect averages, but these are derived quantities, which can
be misleading (the average position of the first excited state of a particle bound in a symmetric

33
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Figure 2.1: The way in which an atomic system emits its photons can be modified by the presence of a
metastable energy level. In the panels, the emission of a photon is indicated by a vertical line. The two
panels show the emission in absence (a) and in presence (b) of a metastable state. In the latter case, one can
clearly identify the temporal regions where the emission of light (and lack of it) alternate. This is captured
by a Monte Carlo simulation in a way that is not straightforward from standard quantum mechanical
averages. This figure is an adaptation from Zoller, Marte, and Walls (1987).

potential is at a point where it is never to be found). In fact, it can be enlightening for theorists
to get closer to the experimental reality by striving to access single realizations as well, out
of which to compute derived quantities, such as observables. For example, Bouwmeester and
Nienhuis (1996) discussed how the experimental observation of single quantum trajectories
could provide evidence for or against Jaynes (1973) neoclassical theory and yield other unique
insights into fundamental aspects of quantum mechanics.

Ceperley and Alder (1986) showed that the Quantum Monte Carlo technique has ramifications
in several fields related to quantum physics. In the context of interest in this Thesis, that of
quantum optics, several methods have been developed in the early 90s (Plenio and Knight (1998)
have written a detailed review). Of these, the quantum jump approach, developed in the late
80s by Zoller, Marte, and Walls (1987) and Carmichael et al. (1989) and simplified further in the
mid 90s by Dalibard, Castin, and Mølmer (1992) and Mølmer and Castin (1996), is particularly
appealing as it links the wavefunction collapse to the emission of a photon. Assuming an ideal
detector that covers the full 4⇡ solid angle surrounding the emitter, this allows to perform a
computer experiment of photo-detections. The need for such sampling techniques was indeed
chiefly motivated by going beyond averages, namely, in the so-called intermittency problem
(that describes the switching on and off of the emission of a lambda system driven coherently),
where the system remains for long periods of time in unstable regions, which are concealed by
the averaging, as shown in Fig. 2.1. From such “clicks” (as we will call a detected photon), one
can for instance compute the Glauber correlation functions g(n), introduced in Eq. (1.32), but
one can also compute less easily accessible quantities such as exclusive probability densities,
e.g., detecting the next photon at a time ⌧ after one detection, with no other photon in between
(g(2) assumes any photon rather than the next one), or distributions of time delays between
nearest neighbours, probabilities to detect any given number or even configuration of photons
in a time window, or any other type of binning “experiment”.

2.2.1 Formalism

We will focus on the Quantum Monte Carlo algorithm, outlined by Mølmer, Castin, and
Dalibard (1993), to simulate the dynamics of an open quantum system. This method allows
to observe individual quantum trajectories that the system undergoes, and which are washed
out by the master equation, as the latter gives the stochastic average of many such individual
trajectories. Furthermore, this technique provides the evolution of a wavefunction—rather than
a density matrix, as required by a description through the master equation (1.20)—which is
particularly useful, and computationally preferable, when the Hilbert space of the quantum
system is very large.

Given that the quantum system is governed by the interplay between a Hamiltonian H
and dissipative processes—which are associated to jump operators Lk defined in Eqs. (1.20-



i
i

“EwQL” — 2019/10/28 — 2:05 — page 35 — #29 i
i

i
i

i
i

2.2 quantum monte carlo 35

1.21)—the implementation of the method demands to define a non-Hermitian Hamiltonian as

ÉH = H *
i
2

…

k
L†

kLk , (2.1)

which rules the deterministic dynamics of the wavefunction. Then, the task is to obtain the state
of the system at a time t+ �t, given that we know the state of the system at a previous time t.
The probability that during the interval of time between t and t+ �t the system undergoes a
quantum jump, induced by the operator Lk, is given by

pk = �t Í (t)L†

kLk  (t)Î , (2.2)

where  (t)Î is the state of the system at time t. Afterwards, we draw as many random
numbers rk (between zero and one) as there are quantum jump operators, and compare them
with the probabilities pk computed in Eq. (2.2). If we find that rk < pk for some k, the system
makes a quantum jump and the state of the system becomes

 (t+ �t)Î =
Lk  (t)Î

Í (t)L†

kLk  (t)Î
. (2.3)

In case there are more than one k for which rk * pk < 0, we have to design a strategy to select
the operator that makes the jump. For instance, one can select the operator for which the
difference pk * rk is the largest. If, on the other hand, we find that rk > pk for all k, there is no
quantum jump and the state of the system evolves as

 (t+ �t)Î =
exp(*i ÉH�t)  (t)Î

Í (t) exp(i ÉH†�t) exp(*i ÉH�t)  (t)Î
. (2.4)

The choice of the time step �t for the simulations needs to be taken in such a way that: i)
the probabilities in Eq. (2.2) are always well below one, and ii) the physical observables are
converged (which can be verified using other numerical methods, or simply decreasing �t). In
fact, Mølmer, Castin, and Dalibard (1993) showed that the method outlined above is completely
equivalent to solving the master equation, given that we take averages over many realizations
and in the limit in which the time step is sufficiently small, i.e., in the limit �tô 0.

2.2.2 Incoherently driven two-level system

We will first illustrate the technique on a two-level system, with annihilation operator �, which
is the simplest system in quantum physics and one of great relevance in this Thesis. Starting
with the free Hamiltonian

H� = !��†� , (2.5)

for a two-level system with free energy !� , and Liouvillian

)t⇢ = i[⇢,H�] +
��
2
L�⇢+

P�
2
L�†⇢ , (2.6)

describing the incoherent driving at a rate P� and an inverse lifetime of the two-level system �� ,
one finds from standard quantum optical techniques that the steady state emission rate and
second-order correlation function are simple quantities, namely

n� =
P�

�� + P�
, I = ��n� =

��P�
�� + P�

and g(2)(⌧) = 1* exp[*(�� + P�)⌧] , (2.7)

which predicts, in particular, that the two-level system displays perfect antibunching at zero
delay, namely g(2)(0) = 0. A Monte Carlo simulation, using the technique explained in Sec-
tion 2.2.1, is shown in Fig. 2.2. The upper panel shows the fluctuations in the detection times
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Figure 2.2: Monte Carlo method on a two-level system. (a) Times of emission for 1 000 000 recorded
photons as compared to their mean emission rate, exhibiting a classical random walk. (b) Zoom of (a) in
the highlighted window. (c) Zoom of (b) in the highlighted window, with detected photons now displayed
in absolute time rather than relatively to their mean emission time. Locally, one can observe a structure in
their statistical distribution, with a tendency of ordering and mutual repulsion. This becomes obvious
when comparing with uncorrelated photons with the same emission rate, shown in (d). The latter exhibit
Poisson bursts. (e) Intensity correlations g(2)(⌧) computed from the one million points, in two timescales,
featuring a clear antibunching. The inverse lifetime of the two-level system sets the time unit.

of a million photons from such a source. As such, this realizes a random walk, similar to a
random (Poissonian) process, and at large timescales there is nothing noticeable. On the short
timescale, however, one can observe clear correlations of antibunching, as shown in the series
of clicks indicated by blue ticks in Fig. 2.2(c). Namely, photons tend to repel each other and
appear more orderly than if they would be uncorrelated, as is the case of the second series
of photon detections, shown for comparison with black ticks in Fig. 2.2(d). The uncorrelated
series exhibits the counter-intuitive “Poisson clumping” or “Poisson burst” effect, which was
made famous by von Bortkiewicz’s horse kicking casualties in the Prussian army and still of
recurrent appearance in the media as intuition repels the notion that a burst of accidents in,
say, a hospital, is a natural random process rather than negligence. The strongly-correlated
character of the two-level system emission becomes clear and compelling when computing
intensity correlations g(2)(⌧) from the clicks, defined as the density of probability of finding
two photons with a time difference ⌧. Specifically, from the times of detection ti, we compute
ti * tj for all 1 f i f N with N the total number of detected photons (here N = 10

6) and
compare the density of time differences to that from uncorrelated clicks with the same intensity.
Note that in a typical experiment, a first photon starts a timer and a second stops it, and a
distribution of the time difference between successive photons is used as a good approximation.
In our case, we compute the exact correlations by collecting all the time differences within the
correlation window of interest. This is shown for ⌧ f 50_�� in Fig. 2.2(e), left. One sees an
overall plateau, indicating that photons have the same distribution for long-time separations as
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if they were emitted by a Poisson process (randomly). But one also observes a clear dip at ⌧ ˘ 0,
indicating that at such close distances, photons behave very differently than uncorrelated ones,
namely, the occurrence of small time delays is strongly suppressed. This is better resolved in
Fig. 2.2(e), right. Such a behaviour defines antibunching, g(2)(0) < g(2)(⌧), with coincidences, i.e.,
simultaneous detection of two photons, less likely to occur than other closely spaced detections,
with perfect suppression of coincidences when g(2)(0) = 0. Since these correlations wash out at
long times, one has lim⌧ôÿ g(2)(⌧) = 1. The time it takes to reach this plateau is the second-order
coherence time. We do not need to overlap these results of the Monte Carlo signal with the
theory curve, Eq. (2.7), since, with one million points, it is exact to within the plot accuracy.
Beside the statistical noise, that starts to be apparent for ⌧ > 1_(2��), the Monte Carlo data
provides a smooth curve in the window of strong correlations. In our simulation, the �t was
0.01_�� and the binning size was taken twice as large, corresponding to the two closely-spaced
vertical lines on the right panel of Fig. 2.2(e), bounding g(2)(0) from below due to this small
uncertainty. With a binning size equal to the Monte Carlo timestep, one recovers the perfect
antibunching at the origin, although on two grid points, so also producing a small error (the
result would be perfect only in the limit of vanishing timesteps).

2.3 impact of frequency-filtering

These results provide the background for our approach with the filtered signal. We now turn to
the question of what happens to the emitted photons if a filter is interposed on their way to
the detector? This does not simply subtract a fraction, it also redistributes those that make it
through, to provide them with possibly very different statistical properties, as we now discuss
in more details.

While the quantum Monte Carlo method has been amply used to compute the power
spectrum as well as time-series of photon emission (see the works of Dum et al. (1992), Marte
et al. (1993), Mølmer, Castin, and Dalibard (1993), Garraway, Kim, and Knight (1995), Hegerfeldt
and Plenio (1996), Plenio (1996), and Schack, Brun, and Percival (1996)), its combined use for
both time and energy-resolved photons has, to the best of my knowledge, not been provided
before in both a practical and exact form. The first attempt in this direction was made by
Tian and Carmichael (1992), who considered the behaviour of an optical cavity containing one
atom. The cavity energy is resonant to a transition of the atom, so that the description of the
dynamics can be done through the Jaynes-Cummings model. Although the cavity could be
thought as a filter for the emission of the atom, the coupling between the two objects is not
weak enough and one can see the presence of the cavity in the observables of the atom, e.g., the
emission spectrum, where lateral peaks (albeit weak) appear on both sides of the Mollow triplet.
Also in the early 90s, Carmichael (1993a) considered the Monte Carlo approach within the
context of the cascaded formalism, but without connecting it to frequency-resolved correlations.
Recently, Sánchez Muñoz et al. (2014b) implemented a Monte Carlo simulation that attempted
to take into account the effect that frequency-filtering has on the temporal structure of the
photons emitted by the Mollow (1969) triplet. Not only were they interested in the emission
from the peaks of the triplet, but also from the frequencies in between, at which Sánchez Muñoz
et al. (2014a) predicted an emission of photon pairs. Indeed, the discovery of leapfrog emission
in general and how these could be further exploited to yield a new type of quantum light,
called for further investigations at the Monte Carlo level. In particular, even without frequency
filtering, Monte Carlo simulations were central in Sánchez Muñoz et al. (2014a)’s analysis of
the purity. In Sánchez Muñoz et al. (2018)’s analysis of bundling with frequency filtering, the
lack of an exact Monte Carlo technique prevented them to bring the bundle emission at the
same level of scrutiny as in their previous work. I will discuss next the limitations of their
approach and, more generally, how to implement an exact and efficient Monte Carlo simulation
with frequency-resolution. The technique consists in adapting the Monte Carlo technique to the
cascaded formalism. The proof of validity is obtained by showing that the clicks thus generated
reproduce the correlations predicted by del Valle et al. (2012)’s theory of frequency-resolved
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photon correlations. We will apply this technique to the driven two-level system, under both
coherent and incoherent emission, at low and large pumping. We will consider both the cases
of autocorrelations and cross-correlations. Of course, the same principles could be extended to
more than two detectors.

2.3.1 Formalism

Sánchez Muñoz et al. (2014b)’s attempt at generating a frequency-resolved Monte Carlo was
insightful and provided an excellent first look at this problem. It consisted in placing the
cavity at resonance with the sought-after frequency (in particular, at the two-photon transitions)
and observing the correlations. However, since the signal at such a frequency is scarce, the
simulation was done with the cavity in weak coupling, rather than the vanishing coupling
required by the theory. In both cases, involving a cavity sets a problem of optimization: either
the coupling is taken to the vanishing limit at the price of reducing the signal available, or the
coupling is left weak at the price of obtaining approximate correlations.

In contrast, my approach allows to extract streams of photons from any frequency windows
of a quantum source, using all the signal theoretically available and taking into account self-
consistently the effect of its filtering, with an exact treatment of its effect on the correlations. This
allows to revisit photon-counting experiments with the added energy degree of freedom, that
are already challenging without the frequency constrains. The equivalence between spectrally-
filtered photo-detection theory and the sensor method was demonstrated by del Valle et al.
(2012). Here, I will likewise demonstrate the equivalence between the sensor method and the
cascaded formalism, which will also prove, therefore, the equivalence between spectrally-filtered
photo-detection theory and the cascaded formalism.

On the one hand, the sensor method “plugs” sensors to the dynamics. Formally, calling � the
annihilation operator of a source and ⇠ that of a sensor probing it, we can describe their joint
dynamics by a Liouvillian equation

)t⇢ = i[⇢,H� +!⇠⇠†⇠ + "�†⇠ + "<�⇠†] +
��
2
L�⇢+

�

2
L⇠⇢ , (2.8)

where H� is the Hamiltonian that describes the internal dynamics of the source, �� is the decay
rate of the source, � is the decay rate of the sensor and Lc⇢ í 2c⇢c† * c†c⇢* ⇢c†c. To describe
the dynamics of an arbitrary operator⇠†�⇠⌫�†m�n under the action of this Liouvillian, we use
the notation of del Valle et al. (2012), in which the correlators for the �th and ⌫th powers of the
sensor operators ⇠†, ⇠ and all powers of the �†, � operators are placed within a vector:

íw[�, ⌫] í (Í⇠†�⇠⌫Î, Í⇠†�⇠⌫�Î, Í⇠†�⇠⌫�†Î,5 , Í⇠†�⇠⌫�†m�nÎ,5)
T . (2.9)

Then, the master equation (2.8) becomes an equation involving vectors of correlators, as follows

)t íw[�, ⌫] =
�

M + [(� * ⌫)i!⇠ * (� + ⌫)�
2
]1
�

íw[�, ⌫] + i"�T
+
íw[� * 1, ⌫]* i"<⌫T

*
íw[�, ⌫ * 1] +O("2) ,

(2.10)
where 1 is the unit matrix, T

±
are normal-ordering superoperators for the � operators, and the

O(✏2) notation means that all other terms are of higher order in ". The matrix M provides the
dynamics for the source

)t íw[0, 0] =M íw[0, 0] +O(✏2) , (2.11)

and is independent of the sensor at the lowest order in ". At this stage, we do not assume
any property of � or ⇠, which could be bosonic (in which case �, ⌫, m and n are unbounded)
or fermionic (in which case �, ⌫, m and n are either 0 or 1). Equation (2.10) can be formally
integrated, yielding

íw[�, ⌫] = i"
$

M + [(� * ⌫)i!⇠ * (� + ⌫)�
2
]1
%*1

�

*ei✓�T
+
íw[� * 1, ⌫] + e*i✓⌫T

*
íw[�, ⌫ * 1]

�

+O("2) ,
(2.12)
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where " = "ei✓ . This in turn can be solved recursively, down to íw[0, 0] where the equation
self-truncates. Each element íw[�, ⌫] is found to be, by inspection of Eq. (2.12), of the order "�+⌫ ,
to the smallest order in " (leading when " ô 0). Note that only the absolute value of the
coupling can be extracted as a common factor in Eq. (2.12). This results in (�+1)(⌫+1)* 1 nested
equations and unknowns in order to compute a given element íw[�, ⌫]. While these equations
can be solved recursively to obtain analytical expressions, we note that the normalised n-th
order correlators, g(n)

�
, are ratios of the first component of íw[n; n] (that is, Í⇠† n⇠nÎ) divided by the

n-th power of the first component of íw[1; 1] (that is, Í⇠†⇠Î), itself of order "2, so that in such a
ratio " is cancelled to leading order. Although higher-order terms would spoil this cancellation,
they become negligible as the sensor coupling is made smaller. Therefore, in the limit " ô 0,
the result becomes exact.

On the other hand, the cascaded formalism, which aims at exciting a target without affecting
the source, provides a similar type of cancellation, although not restricted to vanishing coupling.
From a causality point of view, it is clear that such a source/detector scenario where only one
affects the other can be realized. The source that emitted a photon towards a detector may
not even exist anymore by the time the detector is excited. This is achieved formally through
interferences that cancel the back-action from the detector to the source. The master equation
describing this asymmetric coupling reads

)t⇢ = i[⇢,H� +!⇠⇠†⇠] +
��
2
L�⇢+

�

2
L⇠⇢+

˘

↵���{[�⇢, ⇠†] + [⇠, ⇢�†]} . (2.13)

The last three-terms of Eq. (2.13) can be re-written in the Lindblad form as

��
2
L�⇢+

�

2
L⇠⇢+

˘

↵���{[�⇢, ⇠†] + [⇠, ⇢�†]} =

1

2
L Ço⇢+

�
1
��
2

L�⇢+
�
2
�

2
L⇠⇢+

˘

↵���
2

[⇢, ⇠†� * �†⇠] , (2.14)

where Ço =
˘

(1* �
1
)�� � +

˘

(1* �
2
)� ⇠ is the joint decay operator of the whole system, source

and detector, and the interpretation of the factor �k becomes that of factors that quantify the
amount of signal that each part, source and detector, generates on its own and that the joined
system generates as a whole. The detector, which must have a finite lifetime to couple to
the source, thus also has an intrinsic frequency window with effect of filtering the emission
it detects, whence the connection to the sensors formalism. The factor ↵ = (1 * �

1
)(1 * �

2
),

for 0 f �
1
,�

2
f 1, takes into account that the source can have several decay channels. This is

required for instance when only fluorescence is wanted without contamination from another
source, e.g., a laser exciting it (experimentally this is typically achieved by detecting at right
angle from the exciting beam).

The proof proceeds by showing that ⇠†�⇠⌫�†m�n has the same equation as in the sensor for-
malism, by computing explicitly the equation for )t íw[�, ⌫] in the cascaded formalism, Eq. (2.14).
This reads, to all orders in the coupling in this case:

)t íw[�, ⌫] =
�

M + [(� * ⌫)i!⇠ * (� + ⌫)�
2
]1
�

íw[�, ⌫]*
˘

↵���{�T+ íw[� * 1, ⌫] + ⌫T
*
íw[�, ⌫ * 1]} .

(2.15)
Remarkably, this equation has the same form as Eq. (2.10) with " ô i

˘

↵���. Even though "
is complex and a vanishing quantity in Eq. (2.10), with higher order corrections, and

˘

↵���
is real and finite in Eq. (2.15), both methods provide exactly the same normalised correlators,
as these coupling parameters enter in both the numerators and denominators with the same
power and cancel out. The result becomes exact for vanishing coupling in the case of sensors
and is exact in all cases with the cascaded formalism, regardless of their normalisation. Note
as well that ✓, the phase of the coupling ", has an effect on the dynamics only if the Lindblad
equation features products of different operators in its dissipative terms, which is the case
for the cascaded formalism with L Ço that brings cross terms of � and ⇠. The sensor formalism,
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however, has no such joint decay emission and the phase of " does not play any role, so that
" could have been set real. This achieves to prove the mathematical equivalence of the sensor
method with the cascaded formalism for the computation of normalized correlators.

Since del Valle et al. (2012)’s sensor formalism has been shown to be equivalent to normalized
photon correlations according to photo-detection theory, as discussed for instance by Vogel
and Welsch (2006), the above equivalence of the sensor and cascaded formalisms shows that
following the recipe from Carmichael (2008) and applying the quantum Monte Carlo method
to the detector realizes a sampling of the emission in the corresponding frequency windows,
from which one can reconstruct the frequency-resolved photon correlations. That is to say, this
allows us to simulate the photon emission with both time and energy information, which is
what we are going to illustrate in the following.

Note that with both Eqs. (2.10) and (2.15), any given correlator Í⇠†�⇠⌫Î can be computed
exactly (by recurrence) in terms of lower order ones Í⇠†�®⇠⌫®Î only, with �® f � and ⌫® f ⌫.
This means that both methods can be applied using N two-level systems as detectors at
different frequencies, in order to compute cross correlations, or with a single harmonic oscillator
truncated at N excitations, to compute the Nth order monochromatic autocorrelation function
g(N). This is however not sufficient with the cascaded formalism for computing the density
matrix (full state) of the detectors or for doing Monte Carlo simulations of the emission. In such
cases, one must model the N detectors as harmonic oscillators with a high enough truncation to
provide converged results. Such a simulation is conveniently implemented through the quantum-
jump approach. The dynamics of the system is thus described by a wavefunction  (t)Î that
occasionally undergoes a process of “collapsing”, attributed to the emission of a photon, that one
records in the simulation as a detector would register a click in an experiment. The occurrence
of a collapse is decided in each infinitesimal time interval �t ô 0, where the evolution of the
wavefunction is governed by two elements: a non-Hermitian Hamiltonian and random quantum
jumps, just like in the method described in Sec. 2.2.1. For the system described by the master
equation (2.13), the collapse operators are (cf. Fig. 2.3)

L
1
=

˘

(1* �
1
)�� � +

˘

(1* �
2
)� ⇠ , L

2
=
˘

�
1
�� � and L

3
=

˘

�
2
� ⇠ , (2.16)

whereas the non-Hermitian Hamiltonian is given by

MixtureVacuum

Driving Vacuum

Un�ltered
emission

Filtered
emission D

Figure 2.3: Scheme of the setup to measure the frequency-resolved correlations of the light emitted by a
source, whose energy is centered at !� and has a decay rate �� . While a fraction of the emitted light goes
unfiltered to the open space, to which we refer to as the “unfiltered emission” and which is described
by the quantum jumps of the operator L2 in Eq. (2.16), the remaining fraction is used to weakly drive
the sensor, which has frequency !⇠ and decay rate �, which is also the bandwidth of the sensor. The
emission from the sensor can also be separated into two streams, depending on whether the emission
from the sensor is mixed or not with scattered light from the source (e.g., the emission of the sensor and
the scattered light might follow different spatial paths). The case without the scattered light corresponds
to the “filtered emission” which can then go to a detector D or a Hanbury Brown setup. It is associated to
the operator L3 of Eq. (2.16), while the mixture of light is described through the operator L1 of Eq. (2.16).
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Figure 2.4: Frequency-resolved emission from an incoherently driven two-level system. The number of
events (clicks) recorded are close to 10 000 (namely 9976, 9916, 9974, 9927, 9967, 9955, 9860) for the cases i–
vii respectively, and 25 000 for case viii to get enough signal for the small timescale comparison to the other
filters. (a) The density-plot of the theoretical g(2)

�
(⌧) with the color code indicated (blue for antibunching,

red for bunching and white for uncorrelated). Filtering leads to thermalization. The transition is slightly
more complex than merely loss of antibunching. The dotted line shows the isoline g(2)

�
(⌧) = 1. Monte Carlo

simulations have been done for the eight cuts shown. Panel (b) shows samples of clicks in the same time
window (black, left) or with rescaling to have the same intensity (green, right). There is a neat transition
visible to the naked eye between the two types of photon statistics. Autocorrelation computed from the
clicks are shown in the eight panels at the bottom, together with the theory prediction. In panel v, the
theory curve is also shown displayed to reveal its fine structure departing from g(2)

�
(⌧) = 1. In panel viii,

also the case of longer times is shown since thermalization goes together with slowing down of the
dynamics. For the density plot 1_�� sets the unit and P� = 2�� . The clicks correspond to the emission
events of the operator L3 in Eq. (2.16).

ÉH = H� +H⇠ *
i
2

˘

↵���(⇠†� * �†⇠)*
i
2
(L†

1
L
1
+L†

2
L
2
+L†

3
L
3
) ,

= H� +H⇠ * i
˘

↵��� ⇠†� *
i
2
(���†� + �⇠†⇠) . (2.17)

In the following sections, we apply the frequency-resolved Monte Carlo method to the emission
of a two-level system under various regimes of excitation.
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2.3.2 Incoherently driven two-level system

We now apply the frequency-resolved Monte Carlo method introduced above to the incoherently
excited two-level system, which we have already investigated through the standard Quantum
Monte Carlo method. The effect of a Lorentzian filter on the statistics of emission of an
incoherently excited two-level system has been discussed by del Valle et al. (2018) as is shown
in Fig. 2.4(b). The theory predicts thermalization and loss of antibunching with narrowing
filtering. The theoretical expression for the delay correlation is given by

g(2)
�
(⌧) = 1*

0

�

� * ��

12

e*��⌧ +
��(�

2

� * 3��� * 2�
2
)

(�� * �)
2(�� + 3�)

e*�⌧ +
2���(5� * ��)

(�� * �)
2(�� + 3�)

e*(��+�)⌧_2 , (2.18)

where �� í �� + P� and the detector is resonant to the 2LS. With the frequency resolved
Monte Carlo, one can simulate streams of clicks corresponding to spectral filtering, as is shown
Fig. 2.4(b) with eight Monte-Carlo simulations of roughly 10 000 clicks each (25 000 for the
narrowest filter in case viii). Extracts of the recorded clicks are shown, comparing them, 1)
in the same time window (black ticks), with effect of having much less clicks for narrower
filters, and also 2) when rescaling the unit of time so that the intensities are the same (green
ticks). In the latter case, one can compare the statistical distributions, and observe the transition
from antibunched clicks (i) to thermal ones (viii) passing by auxiliary distributions. In the
former case, one observes the characteristic antibunching, equally-spaced like distribution of
a two-level emitter. In the latter case, one finds the wildly fluctuating thermal (or chaotic)
light, with pronounced bunching in the form of long gaps of no emission followed by gusts
of emission. This can be differentiated even with the naked eye from the Poisson distribution,
whose tendency for “clumping” does not get as dramatic as the thermal case. One can follow
the transition neatly from these various sets of clicks, passing by the case of almost uncorrelated
light. Since the isoline g(2)

�
(⌧) = 1 is not straight (it is shown as a dotted line in the density

plot of Fig. 2.4), the passage from antibunching to bunching does not transit through exactly
uncorrelated (or coherent light), although the deviation is too small to be appreciated on a small
sample. To observe such fine variations, one needs to acquire a large statistical ensemble and
condense the correlations in a single object, such as g(2)

�
, as is shown in the eight panels at the

bottom of Fig. 2.4. The case v of close-to-uncorrelated light is also shown separately from the
Monte Carlo data to reveal its fine structure. The other cases have a simpler shape of a dip that
turns into a hump. The correlation time also changes dramatically, as is observable both from
the density plot and the Monte Carlo histograms. As the emission thermalizes, its fluctuations
occur on longer timescales. This is the reason for the increased noise in panels vi–viii. There,
one should increase the binning and consider larger time windows, as shown in green for
case viii that assumes a binning of �t�� = 1 instead of 0.1 for the other cases, and plot the
correlations in a time window t�� f 100 instead of 10, as indicated on the respective axes,
recovering the excellent agreement with theory displayed by the antibunched cases.

Now in possession of the statistical data, and with the insurance of its accuracy given its
agreement with the theory, it is possible to undertake various types of analysis that would not
be so straightforward without these simulations, as has been discussed above. I will not go in
this direction now and leave for future works the case of an incoherently excited 2LS. Instead,
we now turn to the case of coherent excitation, that presents more features of interest.

2.3.3 Coherently driven two-level system

The case of coherent excitation is obtained by complementing the Hamiltonian in Eq. (2.5) with
the driving of the two-level system, ⌦�(�† + �), and using the master equation (1.44). The case
of a filtered coherently driven 2LS is shown in Fig. 2.5. Here as well, there is thermalization and
although it only happens when the intensity of the driving laser is larger than the decay rate
of the 2LS, i.e., when ⌦� > �� , it is interesting to consider the effect of filtering and approach



i
i

“EwQL” — 2019/10/28 — 2:05 — page 43 — #33 i
i

i
i

i
i

2.3 impact of frequency-filtering 43

-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

-10 -5 0 5 10 -10 -5 0 5 10

0.5

0.0

1.0

1.5

2.0

0.001

1

10

100

1000

0.1

0.01

0.001

1

10

100

1000

0.1

0.01
-10 -5 0 5 10

0
1
2

Figure 2.5: Frequency and time-resolved g(2)
�

(⌧) of a two-level system coherently driven, in its transition
from the Heitler to the Mollow regime (from left to right). At low pumping, one does not observe
thermalization (bunching) with narrowing filters. Higher pumping brings both bunching, similar to the
case of incoherent pumping, and oscillations. The bunching is observed only for moderately narrow
filtering as extremely narrow filtering goes back to filtering exclusively the Rayleigh peak, with a resurgence
of the Heitler effect and uncorrelated (or coherent) emission. Wide filtering overlapping the three peaks
captures the Rabi oscillations. A Monte Carlo simulation of the case highlighted with the dashed line is
shown through a small sample of clicks (bottom) and the autocorrelation function, compared to the theory
prediction. There is a clear structure in the photon clicks, that is unlike any of the cases shown previously.
The clicks correspond to the emission events of the operator L3 in Eq. (2.16).

it from the Monte Carlo perspective. Taking one slice featuring these oscillations, we collect
10

5 clicks, a small portion of which is shown as ticks at the bottom of Fig. 2.5. Computing
the autocorrelations, we find indeed strong oscillations from a very good antibunching with
steep bunching elbows, in agreement with the theory. This produces even more pronounced
correlations in the photon-detection events, where the spacing appears more regular and
between clumps of photons. As far as continuous streams are concerned, this suggests that
such strongly-oscillating g(2) do in fact provide more ordered time series than the conventional
antibunching of the type of Eq. (2.7). Such questions will be tackled in the next Chapter. We
conclude this Section with further comments on the Heitler effect (coherence of the Rayleigh
peak), which takes place in the regime of low excitation. While one could try to recover it in
the high excitation regime using a narrow filter, one needs to consider several fundamental
aspects. First, regarding the emergence of a thermalization similar to that of incoherent driving,
cf. Fig. 2.4, this is obtained when one enters the Mollow (1969) triplet regime. In this case,
luminescence has split into a triplet lineshape and, when filtering at resonance (as is the case
here), one filters the central peak alone, which according to Reynaud (1983) corresponds to
the spontaneous emission of a photon that leaves the state of the dressed two-level system
unchanged. As such, the spontaneously emitted photons react to filtering in a similar way
than the incoherently pumped two-level system, hence the observed bunching for narrowing
filters linewidths. The similarity is only partial, however, as González-Tudela et al. (2013)
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showed that in the limit of infinite pumping, instead of thermalization with g(2)
�
(0) = 2, the

transition is to a super-chaotic state, with g(2)
�
(0) = 3 (for the parameters considered here, we

find max
�
g(2)
�
(0) ˘ 2.2). More strikingly, when filtering well within the central peak, one then

isolates the Rayleigh (�) peak again and reverts to the low-pumping case, with the statistics
becoming uncorrelated, as shown in Fig. 2.5. Large filtering windows, on the other hand, collect
the emission from all three peaks and reproduce the Rabi oscillations, which is the case selected
for the Monte Carlo sampling. We explore in more details the opportunities offered by the
Mollow triplet in the next Section.

2.3.4 Mollow Triplet

2.3.4.1 Autocorrelations

While the influence of spectral filtering on the quantum nature of light emitted by the Mollow
triplet was well understood, for instance by Joosten and Nienhuis (2000), it is not until del
Valle et al. (2012)’s theory of frequency-resolved photon correlations that the full extent of
the interplay between filtering and quantum correlation was appreciated (cf. Sec. 1.2.6). This
is particularly obvious in the 2PS (Fig. 1.15) where such correlations are revealed as two-
photon transition (leapfrogging) straight-lines in the 2D landscape. Such strong correlations are
apparent even in autocorrelations, meaning that a single detector positioned at the appropriate
frequency (halfway between the peaks in the Mollow triplet) would register highly correlated
clicks. We illustrate this in Fig. 2.6 with the statistics of clicks from photo-detection events of
the Mollow triplet in frequency windows spanning from the central peak to the side peaks,
including various other windows in between, in particular, the leapfrog window. Note that,
here as well, the data is for a single-detector observable, that is to say, the different streams
shown are not correlated to each other as they have been obtained by the same detector in
different runs of the experiment. It would require 5 detectors to obtain the same result but with
correct cross-correlations (this is beyond the scope of the present discussion that will go up to
two detectors only, but is of course a topic of interest for applications). As we did in Fig. 2.4,
we show both ticks in a given time window (in black) and with a rescaling of the unit of time
so that their densities are equal (in green). Here as well, the relative emission rates mean that
longer integration times are required when collecting away from the peaks. The gain in terms
of correlation strengths, however, makes it worthwhile to focus on these regions of reduced
emission, in a spirit akin to distillation, as has done del Valle (2013) by trading quantity for
quality. The frequency windows have been chosen as they correspond to particular cases of
interest:

i Photons from the central peak.

ii Case where g(2)
�
(0) = 2 (usually attributed to thermal light).

iii Photons from leapfrog emission.

iv Case where g(2)
�
(0) = 1 (usually attributed to coherent or uncorrelated light).

v Photons from a side peak.

The central peak is partially thermalized, with a g(2)(⌧) that closely resembles the form of
thermal fluctuations, g(2)(⌧) = 1 + exp(*2⌧_⌧

0
). Upon closer inspection, however, this is an

approximation as the exact solution presents small departures, in particular, a differentiable
slope at the origin and small ripples that are thinly visible on the theory curve, that we keep
separate from the Monte Carlo data for clarity (the quality of their agreement is shown in
the rightmost column). Note that the dynamics of coherent driving of a two-level system is
considerably more complicated than its incoherent counterpart and we could not find, so far, a
general closed-form expression for g(2)

�
(⌧) (not even in the case in which !⇠ = !�). Applying the

technique of effective-quantum state reconstruction from the correlators, that I will discuss in
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Figure 2.6: Frequency-resolved Monte Carlo simulation of the Mollow triplet in independent frequency
windows. The dotted (solid) lineshape is the triplet as detected by an ideal (finite-bandwidth �) detector.
Sequences of clicks in the frequency windows i–v have been recorded, with 17241, 22836, 99457, 9112 and
46126 events, respectively. Small samples are displayed, in the same time window (black ticks, up) or with
renormalization of time to compare equal intensities (green ticks, bottom). Clear structures are visible
even to the naked eye, in particular, the existence of leapfrog emission is obvious. Only one detector has
been used, so the streams are not here cross-correlated. The autocorrelations are shown as measured by
the Monte Carlo data (left column), as computed by the theory of frequency-resolved photon correlation
(2nd column, red) and both superimposed (right column), to show their rich fine structure and the
overall agreement. The effective quantum state reconstruction is shown at the bottom, together with fits
to fundamental distributions. Panel v has its successive emission probabilities brought together to show
the exponential extinction of higher photon-numbers. 1_�� sets the unit, ⌦ = 5�� and � = �� . The clicks
correspond to the emission events of the operators L4 and L5 in Eq. (2.20).

detail in the next Chapter, we find that the statistics p(n) fits well with a cothermal distribution
with ˘ 80% of thermal emission and ˘ 20% of uncorrelated emission. Overall, the emission
of the central peak is thus well described by a mixture of thermal and uncorrelated light.
It is, as such, not very interesting per se. Turning now to the second frequency window, ii,
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which features g(2)
�
(0) = 2, characteristic of thermal emission, one can now see more clearly the

deviation from the thermal paradigm, with bulging and tails deforming the correlation function.
These are well reproduced by the Monte Carlo statistics and we let the reader decide if their
statistical acuity lets them, on the small sample of clicks reported here, observe deviations from
the thermal paradigm (cf. Fig. 2.4viii).

The most interesting window, iii, lies halfway between the central and side peak. This is the
frequency at which, following González-Tudela et al. (2013)’s interpretation of the theory, two
photons can make a leapfrog process from the state +Î in a given manifold to the state *Î

two manifolds below, jumping over the intermediate manifold, cf. the transition highlighted
by the yellow arrow in Fig. 1.15(d). These photons are strongly correlated in several ways.
From a photo-detection point of view, they should arise as more occurrences of closely-spaced
two-photon clicks than if the emission was uncorrelated. In particular, their rate of coincidences
should increase, leading to g(2)

�
(0) ∏ 2, or so-called superbunching. This is both predicted

by the exact theory done by del Valle et al. (2012) and González-Tudela et al. (2013) and
observed in our Monte Carlo simulations, as seen in Fig. 2.6. Remarkably, even with as few
as 9112 clicks collected in the numerical experiment, we can reconstruct a high-quality signal,
revealing the fine details of its structure. Note as well that on the real-time series of clicks,
out of the nine photons emitted shown here, four came as two-photon bundles (the fifth and
sixth clicks are so closely spaced as almost overlapping; other ticks are single-photon events).
The small sample of clicks also shows strong ordering, combining equal spacing and gaps
of no emission. While the latter is characteristic of thermal emission, the former is typically
characteristic of antibunching. This combination can be seen as the selection through filtering
of strongly correlated emission from the emitter, rather than tampering from the filters on the
statistics: focusing to this frequency windows allows us to detect the two-photon emission
events that occurs, from the dressed-atom picture, at this frequency. It would be rewarding
to apply this technique to the filtered emission of Sánchez Muñoz et al. (2014a)’s “bundler”
that emits the majority, and in some regime, close to 100%, of its light as N-photon emission,
specially since Sánchez Muñoz (2016) and Sánchez Muñoz et al. (2018) have found that filtering
can considerably boost the purity of the quantum emission. Also further photon-counting
characterization would certainly be enlightening, and preliminary investigations show that
the percentage of closely-spaced photons is over an order of magnitude higher in iii than in
the others at the exception of ii, as compared to which it is only about 3.8 times larger. We
leave further characterizations for future works, but provide a last compelling manifestation of
leapfrog emission from the effective quantum state reconstruction approach. This highlights
the frequency window iii as the most dissimilar one as compared to the others, featuring a
neat kink at the probability to have two photons, p(2), showing the relative predominance of
two-photon emission.

The fourth frequency window, iv, chosen for its g(2)
�
(0) = 1 of uncorrelated emission, is

also a case that shows strong departures at nonzero ⌧ due to filtering. This is, here again,
well captured by the Monte Carlo clicks and is visibly noticeable on the small sample, that
features ordered clumps of uncorrelated clicks. With the last window, v, we come back to a case
well studied in the literature, of antibunched emission, albeit far from perfect (g(2)

�
(0) ˘ 0.42

and min⌧ g
(2)

�
(⌧) ˘ 0.37). The fact that the minimum antibunching is not at zero is another

manifestation of frequency filtering, thinly visible on the figure as small oscillations, but not
reproduced at this level of signal by the Monte Carlo data. Correspondingly, the p(n) shows
increasingly suppressed probabilities to get higher number of photons.
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2.3.4.2 Cross-correlations

We now consider cross-correlations, for which the Mollow triplet is also a particularly suitable
lineshape. That is to say, we consider two detectors acquiring data simultaneously. The master
equation for two detectors upgrade Eq. (2.14) to:

)t⇢ = i

L

⇢,H� +
…

i=1,2
!⇠i⇠

†

i ⇠i
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the system described by the master equation (2.19) has five collapse operators:
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and its associated non-hermitian Hamiltonian becomes
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As for the case of autocorrelations, one could similarly demonstrate the equivalence between
cross-correlations to any orders as computed through the frequency-resolved photon correlations
and those obtained through Eq. (2.19) above. Also, as was done before for single frequency
windows, by applying the Monte Carlo techniques to the detectors, one can thus obtain
simulated photon emissions, this time in two frequency windows. Computing the correlations
from this raw data provides a numerical version of the theoretical correlations. This is shown
in Fig. 2.7 for the joint emission of the two sidebands on the one hand, and then of the two
leapfrog windows on the other hand, both when driving the two-level system at resonance or
with a detuning.

While we considered a small subset only of the possible autocorrelations in Fig. 2.6 for the
Monte Carlo data, we could still provide a comprehensive theoretical result at least for g(2

�
(0)

through the color-coded spectrum. For cross-correlations, however, this would require a 2D plot
to reproduce the entire two-photon correlation spectrum predicted by González-Tudela et al.
(2013). Instead, we consider here the case where one detector is fixed and the other one sweeps
the rest of the spectrum, providing the cross-correlations. We then place the other detector for
Monte Carlo sampling at the location of interest. As before, we show raw photon emission, but
with no time-rescaling as the respective frequencies chosen have similar intensities. We also
compare two-photon correlations computed from this data (black and blue lines, at resonance
and with detuning respectively) with the theoretical result (red lines). The main difference
between these cases and the previous ones is that the two streams of photons are now correlated
as the detectors are measuring simultaneously. If restricting to one stream only, we recover the
previous cases, so in Fig. 2.7, panels i-i and ii-ii on the one hand, as well as iii-iii and iv-iv on
the other hand, can be found in Fig. 2.6 (in panels iii and v respectively). The two cases have
different parameters, since with two detectors, the simulation is more computer intensive and
we chose a case that provides more emission between the peaks. One can check however how
the qualitative shapes of the correlations remain the same. At resonance, both streams provide
the same type of correlations, but with detuning, they could be different. This is indeed the case
for the leapfrog emission, and small departures can be observed between v-v and vi-vi, both in
the theoretical line and the Monte-Carlo generated data: the oscillations are more marked for
the low-energy window and a depletion is indeed visible in vi-vi that disappeared in v-v. The
side peaks, however, feature similar correlations. This shows again the typical richer dynamics
away from the peaks.
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Figure 2.7: Frequency-resolved Monte Carlo simulation of the Mollow triplet in dual frequency windows.
The case on the left (right) is for driving the two-level system at resonance (with detuning � = 1.5��).
The dotted (solid) lineshape is the triplet as detected by an ideal (finite-bandwidth �) detector. The color
code within the spectra is for one filter kept fixed at a leapfrog window (top case) or at a sideband
(bottom case). Sequences of clicks have been recorded in the windows i and ii and iii and iv, the two
groups being independent (that is, clicks between, e.g., i and iii are not correlated). Small samples are
displayed, with renormalization of time to compare equal intensities between the two groups (time is the
same within each group). Strong correlations of photons with different frequencies are clear, in particular,
the simultaneity of leapfrog emission and their heralding character with detuning are obvious. The
cross-correlations are shown as measured by the Monte Carlo data (left column) and as computed by the
theory of frequency-resolved photon correlation (2nd column, red). 1_�� sets the unit, ⌦ = 5�� , � = 1.5��
and � = �� . The clicks correspond to the emission events of the operators c4 and c5 in Eq. (2.20).

Both at resonance or with detuning, what is of interest when detecting in different windows
simultaneously is their cross-correlations, as shown in the central column of Fig. 2.7 with panels
i-ii, vi-v, iii-iv and viii-vii. There are now clear features in these cross-correlations, whereas
the same procedure applied to the streams of the previous cases features no correlations, i.e.,
one obtains flat lines. At resonance, the cross-correlations are symmetrical in time. The side
peaks correlations feature tiny oscillations which are however too small to be observed with
the amount of signal we acquired in the numerical experiment, and they are hidden by its
fluctuations. With detuning, they can and do become time-asymmetrical, as shown in panels vi-v
and viii-vii. In such cases, the order of detection matters, and in both cases, the detection on
first detector, vi or viii, respectively, makes it more likely to later detect (with around 1_�� delay)
a photon on the second detector, v and vii, respectively. The strength of such correlations, less
than 3, is still fairly modest to call this heralding, but this is the basis for such a mechanism to
be exploited with proper engineering, such as Purcell-enhancement. Like before, our procedure
yields correlated streams of photons of different frequencies, that we have just shown through
their agreement with the theory of frequency-resolved photon correlations, simulate the actual
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photon emission from the system. One could use this raw data to compute numerically, e.g.,
counting or time-delay distributions, otherwise not easily accessible theoretically. Of course,
the scheme could in principle be extended to any number of detectors and allow consequently
higher orders of correlation to be computed in this way. In the limit of an infinite number of
detectors, each with a given frequency and vanishing spectral width, one would thus simulate
the ideal emission of the system. With a finite number of detectors with a finite bandwidth, one
would simulate its filtered emission. We believe that a complexity analysis of the correlations
would allow to use the emission of the two-level system as a simpler platform than the boson
sampling protocol, proposed by Aaronson and Arkhipov (2011) to test quantum supremacy by
making a laboratory measurement which no classical computer would be able to simulate.

2.3.5 Controversy

Decades ago, Apanasevich and Kilin (1977) noted the correlations that exist between photons
emitted from resonance fluorescence for the case of transitions obeying ±Î – ±Î. While back
then the authors overlooked the transitions that follow the rule ±Î – -Î (which are equally
obvious with the dressed atom picture in mind), this was a considerable achievement that
foresaw these results with two years of advance on the other experts in a time of burgeoning
activity. Now paired with another co-author, Shatokhin and Kilin (2000), Shatokhin and Kilin
(2001), and Shatokhin and Kilin (2002), produced another series of noteworthy works on the
problem of photon correlations. Recently, however, Shatokhin and Kilin (2016) have expressed
some critics on the leapfrog picture, writing that

the concept of the “leapfrog” processes is not justified, [we] present an alternative explanation
[based on] the unnormalized spectral correlation function [which is] a true measure of
spectral correlations and which exhibits no signatures of the leapfrog transitions.

From their discussion, one thus understands that the production of strongly-correlated photons
away from the peaks, that was predicted by González-Tudela et al. (2013) and others in their
wake, is an artifact due to normalization. In principle, one can indeed inflate the vacuum and
create what one could regard as an artificial superbunching. In fact, this is the mechanism used
by Liew et al. (2016) in their proposal for a bosonic laser. This, however, is not what happens
with leapfrog emission, although according to these authors, nothing of interest takes place
away from the peaks, what they illustrate by producing a two-photon spectrum remarkably
featureless, in contrast to the two-photon spectrum that is rich from photon correlations
flourishing away from the peaks. I compare the two versions in Fig. 2.8, showing in panels (a)
and (b) the theoretical prediction and its experimental verification by Peiris et al. (2015). On
the other hand, the two-photon spectrum proposed by Shatokhin and Kilin (2016) is shown in
panel (c) (which displays the correlations as Ía†(�

1
)a†(�

2
)a(�

1
)a(�
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2
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2
)Î),

comparing the two-photon correlations with the product of the photon occupation at each
frequency. This non-normalized spectrum is correct but is also less interesting as it merely
shows that first-order processes smother second-order ones, as is however well-known and
expected. As I have shown above, in contrast, the scarce signal from higher-order processes has
stronger correlations than those from first-order processes. This is amply and vividly illustrated
through the Monte Carlo simulations below. One can also consider placing a cavity in this
“featureless” region when not normalized, and observe how the system then keeps emitting
strongly correlated photons but now dominating over the other first-order processes, as has
been showed by Sánchez Muñoz et al. (2014a) and Sánchez Muñoz et al. (2018), and which
would not happen would the correlation be an artifact due to normalization. The best proof,
however, comes from a frequency-resolved Monte Carlo simulation, where the manifestation
appears to the naked eye, as shown for instance in Fig. 2.6, where one can see how photons
are physically detected as closely-spaced. Indeed, this simulation makes it obvious that the
emission in this frequency window suffers from no artifact of post-selection or normalization,
but does indeed provide strongly correlated photon streams.
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(a) (b) (c)
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Figure 2.8: Two-photon spectra from the Mollow triplet. (a,b) Prediction made using the theory of del Valle
et al. (2012) and experimental observation by Peiris et al. (2015), displaying an outstanding agreement
between them. The two-photon emission—the leapfrogs—can be identified in the regions of the principal
diagonal in which the cross-correlations are the highest. (c) The unnormalized two-photon spectrum
proposed by Shatokhin and Kilin (2016) in which all the features are washed away. The figures are an
adaptation from Peiris et al. (2015) and Shatokhin and Kilin (2016). Note that in panels (a-b) the y-axis is
inverted, with the positive values on the bottom, while in Panel (c) the axes are in the canonical order, and
the comparison should be done with a two-photon spectrum as shown in Fig. 1.15(b).

The rest of Shatokhin and Kilin (2016)’s criticisms are merely on semantics, in which case
we should clarify, as this is apparently needed, that the dressed-atom picture is, precisely,
a “picture”, that is, an insightful mental representation that is helpful to visualize the basic
mechanism at play, support the intuition and guide further inquiries. This does not preclude
exact calculations based on the opaque equations of quantum mechanics. This is possibly why
the Mollow triplet is named after Benjamin, not only for his seminal input but also in recognition
of the exact expression, although the Cohen Tannoudji and Reynaud approximate picture is the
one everybody has in mind when thinking about this problem. We combine both approaches:
the sensor technique provides the exact result, while the leapfrog processes provide a physical
representation à la Cohen Tannoudji et al.. Thus, in the same way that resonance fluorescence is
not spontaneous emission from the dressed atom, the leapfrog emission is not, strictly speaking,
spontaneous emission jumping over intermediate manifolds. This is, instead, a complicated
process that involves the laser and the two-level system in a sequence of coherent absorption
and emission. In fact, in Chapter 6, I will show how even fluorescence in the low-driving
regime does not consist of Rayleigh scattering events but form an intricate interference between
emission and absorption, that powers the single-photon emission mechanism by suppressing
the fat tails of the Lorentzian and turning the lineshape into a t

2
distribution instead. In the

strongly nonlinear regime, a similar dynamics takes place but it becomes forbidding and
certainly not even useful to apprehend the problem in these terms. Note that although inspired
by the dressed-atom approach of the problem, ultimately, our computations are exact (and in
full agreement with this physical picture). While the dressed atom picture has proven to be
extremely fruitful for two photons, the N-dimensional case treated in Chapter 4 will make
its usage mandatory. In fact we can easily generalize them to arbitrary photon orders and
guess which energies are to be avoided in a N dimensional space to harness the best sought
configuration of multi-photon emission, without having to undertake any actual computation.
Is the concept therefore not justified and should one only be allowed infinite series of Feynman
diagrams? We therefore believe that the comments of Shatokhin et al. targeting the leapfrog
picture bring very little to their physics, if not in fact muddying it with confused statements
and blurring their actual contributions that otherwise concur with our results, and of which we
wish to remove nothing, as this approach has its merits.
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2.4 conclusions

In conclusion, I have presented in this Chapter an efficient and numerically-exact technique
to simulate photon emission when taking into account the frequency degree of freedom, and
applied it to computer experiments that simulate the photon emission from a two-level system
under both coherent and incoherent driving, at both low and large pumping. In essence, this
upgrades Monte Carlo techniques to colored photons. This approach is based on the Quantum
Monte Carlo technique, first introduced by Zoller, Marte, and Walls (1987), Carmichael et al.
(1989), Dalibard, Castin, and Mølmer (1992), and Mølmer and Castin (1996), applied to the
cascaded formalism developed by Gardiner (1993) and Carmichael (1993a). I have shown how
the correlations computed from the raw data of the simulation match with the theoretical
results provided by del Valle et al. (2012)’s theory of frequency-resolved photon correlations.
In the simplest case, I have confirmed with simulated photon emission how filtering spoils
antibunching and turns a two-level system into a thermal source, albeit in a more subtle way
than is usually assumed. I have also shown more generally how frequency filtering provides
a resource to tailor and engineer photon statistics, in particular thanks to its selection of
strongly correlated processes such as “leapfrog” transitions that consist in the simultaneous
emission of a photon bundle between two non-contiguous dressed states in the level structure
of the system, as has been predicted by González-Tudela et al. (2013). This displays rich and
potentially useful features that are captured in the Monte Carlo simulation and that would
be similarly observed experimentally. An apparent shortcoming is that the signal is scarce in
frequency windows that are the most strongly correlated. This is however a direct consequence
of dealing with the quantum part of the signal: there is less of it. Del Valle (2013) further showed
that frequency filtering acts as a process akin to distillation, with the same consequence of
providing quality at the expense of quantity. Nevertheless, quantum engineering can come to
the rescue and using the oldest trick of cavity QED—Purcell enhancement—Sánchez Muñoz
et al. (2014a) found all the light of the system to be emitted as strongly correlated bundles
of photons. In Chapter 4, I will further expand on this idea and show that using cavities to
Purcell-enhance leapfrog processes, one can devise new generations of heralded N-photon
sources, or, even more generally, bring the system to emit in any desired distribution of photons.
Such configurations remain to be studied in detail and, of course, implemented in the laboratory.
The latest work from Peiris, Konthasinghe, and Muller (2017), who are so far leading the
laboratory implementation of this emerging branch of quantum optics, focused on the side
peaks emission and, although they did observe the predicted effect, they failed to break the
barrier of a Bell violation which Sánchez Muñoz et al. (2014b) place at in the leapfrog window.
Jogenfors, Cabello, and Larsson (2017) have challenged this proof of nonlocality, arguing that
the work of Aerts et al. (1999) shows that such setup can only reach a 50% post-selection. It is
easily computed that leapfrog emission would break the Franson limit, but in the light shone
by Jogenfors et al. (2015) on the Franson configuration’s loophole, the new challenge is to turn
to stricter conditions of Bell violations such as Chained Bell’s inequalities. While Tomasin et al.
(2017) have recently demonstrated this, the tunable statistics from the Mollow triplet and its
windows of strong correlations make it a promising platform to further test and advance this
line of research. Finally, the combinatorial aspects that quickly make such simple problems
numerically forbidding also suggest that a two-level system could be used in the laboratory
for tests of quantum supremacy directly from photon detections, without a complex system of
beam splitters intervening to bring in the quantum complexity, as demonstrated by Broome
et al. (2013) and Crespi et al. (2013). All these results leave much room for further works, and I
foresee that frequency-resolved photon correlations will become a major theme of photonics.
They are relevant even when they are ignored and awareness of the underlying physics should
allow to considerably optimize, tune and expand the range of applications of quantum light
sources.
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3
S I N G L E - P H O T O N L I G H T

If a thing is worth doing, it is worth doing well.

— Oscar Wilde

3.1 introduction

Over a decade ago, O’Brien, Furusawa, and Vučković (2009) and more recently Aharonovich,
Englund, and Toth (2016) as well as Senellart, Solomon, and White (2017) described how single
photon sources (SPS) constitute a basic component of the future quantum technologies. As
described by Rezai, Sperling, and Gerhardt (2019), there are many things that single photons
can do that lasers cannot. Since then, several groups including Kuhlmann et al. (2015), Somaschi
et al. (2016), Ding et al. (2016), Wang et al. (2016), Kim et al. (2016), Daveau et al. (2017), Grange
et al. (2017), Schlehahn et al. (2018) or Hanschke et al. (2018) among others, have actively
pursued their laboratory implementation and are competing for the delivery of the best emitter
with the required characteristics. As has been emphasized by, e.g., Dada et al. (2016), Müller et al.
(2016), Eisaman et al. (2011), Santana et al. (2017), He et al. (2017), Loredo et al. (2017), Rodiek
et al. (2017), and Schweickert et al. (2018), the desiderata for single photon emitters are both of a
fundamental character (such as antibunching, purity, indistinguishability, etc.) and of an applied
nature (efficiency, price, brightness, etc.). As numerous routes exist to generate single photons,
there is a need to compare different emitters from several platforms and operating through
various mechanisms. Since the technology is yet within a developmental phase, the most prized
properties are still the fundamental ones. As such, one of the defining characteristics of a SPS is
the suppression of multiple-photon events. Already in the early 80’s, Paul (1982) identified that
photon antibunching, a property that refers to the second-order correlation function, defined
in Eq. (1.33), satisfying the relation g(2)a (0) < g(2)a (⌧), is a good parameter to characterize the
multi-photon suppression. In fact, it has long been known (see for instance the books of Gerry
and Knight (2005) or Vogel and Welsch (2006)) that antibunching is a proof of the non-classical
character of the field and is commonly used as a criterion for the quantum character of a state.
Zou and Mandel (1990) proposed another quantity, which became more popular, although it is
fundamentally disconnected from antibunching—since in general none implies the other—and
consists on the suppression of zero-delay coincidences as compared to random events, namely
g(2)a (0) < 1. This describes sub-Poissonian fluctuations and, of particular interest for SPS, the case
g(2)a = 0 corresponds to a field with at most one photon at any given time. For this reason, it has
been adopted as the criterion to describe single photon sources. However, a mathematical zero is
not a good physical observable. Aiming instead for g(2)a (0) to be very close to zero would be the
natural remedy, and has been the one adopted by the quantum optics community at large. This
criterion, however, is misleading for the purpose of comparing—or even identifying—single
photon sources (SPS). In this chapter, we aim to both reveal the shortcomings of small but
nonzero g(2)a and to propose a fitting substitute. This will allow us to establish a ranking of the
best mechanisms for single-photon generation. Our approach is to first identify what constitutes
a perfect SPS and then compute how much do the various candidates depart from it.
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3.2 the role of detection

3.2.1 Effective quantum state

Single photon sources and the light that they provide are only useful when they are shone
on other objects. The latter collects the emission, and acts as an observer. As we have seen
in Section 1.2.5, the photon correlations of the detected photons are affected by the finite
spectral resolution of the observer. This effect can be illustrated using the light emitted by a
two-level system (2LS). In principle, the latter can only emit single photons, as it can only
sustain one excitation at every instant in time. In fact, the second-order correlation function
of a 2LS, given in Eq. (1.50), vanishes exactly when the delay between the photons is zero.
However, as we have seen in Fig. 1.15, an observer with a finite resolution sees a large breadth
of correlations, depending on the frequencies at which they are looking. The interplay between
the temporal and spectral uncertainty of the observer leads, in particular, to a finite zero-
delay photon correlation. In turn, this implies that filtering the emission of a 2LS results in
nonzero probabilities p(n) to detect n g 2 photons. There are various ways to understand this
result, and we already mentioned how the filter introduces a time uncertainty that can pile-up
consecutive photons. More interestingly, from a quantum mechanical viewpoint, the 2LS can be
seen to emit a continuous stream of photons at all the possible frequencies, which amplitudes
interfere destructively to result in a single photon upon detection. Trimming the tails spoils the
destructive interference and allows more than one photon to reach the detector: the frequencies
of the photons are in fact a crucial component when it comes to suppressing multi-photon
emission.

Since an observer would detect an effective quantum state of the light emitted by the source,
and even if the latter is a 2LS the probability of detecting two (or more) photons simultaneously
is non zero, we need to describe the frequency-filtered source as an effective source of its own,
with a bosonic annihilation operator s. The detector and the effective source are of course related.
On the hand, the normalized photon correlations are identical, since the detector measures
faithfully the correlations of the (effective) source, namely

g(n) =
Ís†nsnÎ
Ís†sÎn

=
Í⇠†n⇠nÎ
Í⇠†⇠În

, (3.1)

where ⇠ is the annihilation operator of the detector. On the other hand, the conservation of
energy imposes that the emission rates of the two systems must be equal:

��Ís†sÎ = �Í⇠†⇠Î , (3.2)

where �� and � are the decay rates of the source and detector, respectively. Thus, combining
Eqs. (3.1) and (3.2) we obtain the relation between the unnormalized correlators:

Ís†nsnÎ =
0

�

��

1n
Í⇠†n⇠nÎ , (3.3)

from which, as I have shown with Zubizarreta Casalengua et al. (2017), one can derive the
probability p(n) of find the effective source occupying the Fock state nÎ. These probabilities are
obtained through a bijective map linking them to the photon correlations as

p(n) =
…

kfn
=

(*1)
k+n

n!(k* n)!
Ís† kskÎ , (3.4)

where, although in principle the summation has to be done for k up to infinity, it quickly
converges for finite (and usually rather small) number of photons. Note that the photon
correlations that enter in Eq. (3.4) are unnormalized. While the sensing method of del Valle
et al. (2012) and the cascaded formalism (Sec. 1.2.1.2) are equivalent when one is interested
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in the normalized photon correlations, only the cascaded formalism can provide the average
population of the detector Í⇠†⇠Î. Thus, in the following we will use the cascaded formalism,
and consider the effective quantum state of a filtered 2LS excited either through an incoherent
or a coherent driving.

The dynamics of the system is governed by the master equation (1.28), setting c
1
= � (the

fermionic annihilation operator of the 2LS), c
2
= ⇠ (the bosonic annihilation operator of the

detector) and the decay rates as �
1
= �� and �

2
= �. While the Hamiltonian for the detector is

given by H
2
= !⇠⇠†⇠, the Hamiltonian for the 2LS depends on the driving regime. In the case

of incoherent driving H
1
= !��†� and the master equation needs to be complemented with

the Lindblad term (P�_2)L�†⇢ to describe the excitation. In the case of coherent driving, the
Hamiltonian of the 2LS is given by Eq. (1.45) and the frequency of the detector needs to be
referred to the frequency of the driving laser. Thus, the population of the detector is when the
2LS is driven incoherently is given by

Í⇠†⇠Î =
P���(�� + �)

��((�� + �)
2 +�2)

, (3.5)

while in the case of coherent excitation it reads

Í⇠†⇠Î =
⌧

2�
01
⌦
2

�(�10(�
2

11
+ 4�

2
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2
(�2

12
+ 4�

2
) + 4⌦
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2

11
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, (3.6)

with �� = P� + �� , � = (!� *!⇠) and �ij í i�+ j�� . For the incoherently driven 2LS, the photon
correlations observed by the detector can be written in closed form through the recurrence
relation (the case out of resonance is also analytical, but too cumbersome to be written here)

g(n)
�

= g(n*1)
�

n��(�� + �)
[�� + (n* 1)�]

⌅

�� + (2n* 1)�
⇧
, (3.7)

where by normalization g(2)
�

= 1. Using these normalized correlations and the average population
in Eq. (3.5), we can compute the unnormalized correlations and, using Eq. (3.4), obtain the
probability to detect n photons from a 2LS driven incoherently:

p(n) = Cn ù 1
F
2

0

n+ 1;
2n+ 1

2
+
��
2�

, n+
��
�
;*
P�
2�

1

, (3.8)

where
1
F
2

is the generalized hypergeometric function and Cn are coefficients that satisfy the
recurrence relation

Cn
Cn*1

=
P��

[�� + (n* 1)�][�� + (2n* 1)�]
,

starting with C
0
= 1.

Following the same procedure, one can obtain the expressions for the n-th order correlation
function and the probability distribution for the coherently driven 2LS. However, these expres-
sions are too bulky to be written here. Figure 3.1 shows the reconstruction of the quantum
state of the filtered emission of a 2LS under the two types of driving: incoherent and coherent.
Panels (a) and (b) show the emission spectra of the 2LS and the various frequency windows
used for the figure. Filtering the emission makes the observed state of light equivalent to the
unfiltered emission from a source with a different—in particular, bosonic—probability distribu-
tion, shown in panels (c) and (d), for the incoherently and coherently driven 2LS, respectively.
In the former case, we used a large driving intensity, P� = 10

2�� , so that in the case of perfect
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(c) (d)

(a) (b)

unfiltered

Incoherent excitation Coherent excitation

Figure 3.1: Effective quantum state reconstruction from the emission of a frequency-filtered 2LS. (a-
b) Emission spectrum of an incoherently and of a coherently driven 2LS, together with several frequency
windows that filter the emission. The light filtered in this way is equivalent to the emission of an unfiltered
emitter whose quantum state has a distribution p(n) to have n excitations, shown in (c) and (d). For the
incoherent driving, case (c), the system is kept in its excited state by large pumping, so that without
filtering, one observes a state close to the Fock state p(n) = �n,1. Filtering leads to thermalization, with
preponderance of vacuum but nonzero probability to detect n > 1 particles. The same is observed for the
coherent driving, case (d), but starting from p(0) = p(1) = 1_2 due to the no-inversion of a two-level system
in presence of stimulated emission. The figure is obtained with the following parameters: for incoherent
excitation, P� = 10

2�� (saturating the two-level system). For coherent excitation, ⌦� = 5�� . The rest of the
parameters are as indicated in the figure.

detection (�_�� ô ÿ) the observed quantum state is the Fock state with one photon 1Î. The
application of a filter turns the system from a two-level emitter to a source able to deliver
more than one photon at a time, namely, for narrow enough filtering, p(n) ˘ (1* ✓)✓n for all n,
with ✓ ˘ 0.01 for the narrowest filter considered here. We have lost two orders of magnitude
for the population but the probability to observe two (resp. three) particles is 1% (resp. 0.01%)
of that to observe one only, etc., which effectively shows how filtering a single-photon source
turns it into a black body with nonzero probability to emit n photons. Its population is smaller
than without the filter, as the latter is rejecting some photons, but the statistical distribution
of those that go through now corresponds to an altogether different quantum state. A similar
situation occurs with coherent excitation (when not filtering so much as to isolate the Rayleigh
peak), with, for the case shown in Fig. 3.1(d), ✓ ˘ 0.025. In the next section, I will show at which
point filtering prevents a single-photon source to emit non-classical states of light, i.e., states
that cannot be expressed as a convex mixture of Gaussian state.

3.2.2 Convex mixture of Gaussian states

The probability distributions of the filtered 2LS, given in Eq. (3.7) for the incoherent driving
and shown in Fig 3.1(c–d) for both types of driving, show that filtering (or, equivalently, using
a finite-resolution detector) spoils the photon correlations and the strong quantum character
of the source. Filip and L. Mišta (2011) proposed a criterion to identify (truly) quantum states,
considering whether they are beyond a convex mixture of Gaussian states (every classical state
can be expressed as one such mixture). The criterion of Filip and L. Mišta (2011) for the strong
character of a state was given as an upper bound for the probability p(1) of the state being in the
Fock state of one photon: No convex mixture of Gaussian states can have this probability larger
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than 3

˘

3_(4e) ˘ 0.477889. For a 2LS with decay rate �� , excited incoherently at the rate P� or
excited coherently with an intensity ⌦� , this is achieved when

P�
��

g
p(1)

1* p(1)
˘ 0.9153 or

⌦�
��

g
1

2

v

p(1)
1* 2p(1)

˘ 1.64368 . (3.9)

There is thus a threshold in pumping to meet this criterion. Higher pumping of course satisfy it
even more and in the limit of infinite pumping, the incoherent excitation of a 2LS maintains the
pure Fock state 1Î in the steady state. This is the most quantum state one can get with respect
to a single-particle objective. However, strong pumping is also not good for SPS, as it spoils
another important quality: the indistinguishability of the emitted photons. With pumping comes
power broadening and photons are emitted with increasingly fluctuating energies. The Fock
state 1Î emits photons one at a time but at all the frequencies! For the case of coherent driving,
increasing the intensity of the driving also makes the state of the emission more quantum,
but the emission is again spread over all frequencies (and taking place from three different
Lorentzians).

Shortly after Filip and L. Mišta (2011)’s paper, Ježek et al. (2011) showed that considering
both the probability of observing the vacuum and a single photons provide a stricter criterion to
separate weak classes of quantum states from strong ones. Figures 3.2(a–b) show the probability
for the vacuum p(0) and for one-excitation p(1) as a function of the incoherent pumping rate to
the 2LS and the filtering linewidth of the detector. The parameter-space that lies on the right of
the thick blue line realizes the quantum non-Gaussian states sought for quantum applications,
while those on the left can be obtained as convex mixtures of Gaussian states. This confirms
that to maintain the quantum character of the source, there is a limit to the filter linewidth. For
a pumping rate commensurable with the decay rate, the boundary lies roughly at twice the
intrinsic linewidth of the two-level system. Increasing filter bandwidths are required not for
higher pumping rates—due to power broadening—but also for vanishing driving, showing that
the more scarcely the 2LS is excited, the less quantum it is—due to the deleterious vacuum
contribution.

Since the tail events are the main responsible for spoiling the SPS, an emitter whose power
spectrum has faster decaying tails than Lorentzian allows to collect more of the photons in

(b)(a)
I

II

(c) (d)

I

II

I

II

I

II

Figure 3.2: Vacuum and sin-
gle photon probabilities for
a frequency-filtered 2LS un-
der incoherent (a & b) and co-
herent (c & d) excitation. The
blue thick contour divides
the states that, according to
Ježek et al. (2011), exist as a
convex mixture of Gaussian
states (I) from those that ex-
hibit a strong quantum char-
acter (II).
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a reduced spectral window and thus better preserve its quantum features. The simplest way
to achieve this is to turn to coherent driving. In Chapter 6 we will show that in the low
intensity regime of the coherent driving, commonly referred to as the Heitler (1944) regime,
the processes of absorption and spontaneous emission interfere to yield an emission spectrum
with a Student t

2
distribution. This can be further enforced either by turning to quantum

rather than classical excitation, in a cascaded scheme of several 2LS in a chain, as I will show
in Chapter 6, or by devising a mechanism that allows the emission of single photons with a
spectral width narrower than the natural linewidth of the emitter, as I will show in Sec. 3.3. A
drawback of coherent driving is that it forbids total inversion of the 2LS, which, by stimulated
emission, is at most half-excited. Therefore, while the g(2)

�
is indeed smaller, the quantum state

itself deviates less from convex Gaussian mixtures than under incoherent excitation. This is
shown in Figs. 3.2(c–d), which are the counterparts of the above row but for coherent excitation.
The probability saturates at p(1) = 1_2, which is a considerable impediment to demonstrate a
genuine quantum character (e.g., through a negative Wigner function).

The quantum non-Gaussian character of the state, although of great fundamental interest,
is clearly not characterizing a SPS (an emitter of N-photon states would also generate non-
Gaussian states). The widely used criterion that relies on the second-order correlation function
captures the key idea and indeed sets the standard. It presents, however, some subtleties and
is frequently mishandled, for instance through a popular criterion g(2)

�
< 1_2 that supposedly

guarantees the single-photon or single-emitter character of the source. One finds such a
misinterpretation in the works of Michler et al. (2000), Verma et al. (2011), di Martino et al.
(2012), Lukishova et al. (2012), Palacios-Berraquero et al. (2016), Ishii, Uda, and Kato (2017),
Grosso et al. (2017), Lin et al. (2017), Dietrich et al. (2018), and Walker et al. (2018). However,
I will show in Chapter 5 that the Hilbert space contains an infinite amount of states with
population larger than one, and which still satisfy the condition g(2) < 1_2. Although the
exact criterion remains g(2) = 0, it is surprising that striving for the condition g(2) ô 0 leads
to incorrect results, as it can be shown that many states have vanishingly small second-order
correlation, while also having arbitrarily large third-order correlations. For instance, the state

⇢ = (297001_300000) 0Î Í0+ (1999_200000) 1Î Í1+ (1_600000) 3Î Í3 , (3.10)

has g(2) = 1_10 and g(3) = 10. Thus, considering only the second-order correlation function is
not enough to guarantee the single-photon character of a source. Indeed, Filip and L. Mišta
(2011) showed that the condition on g(2) alone accommodates as well the weak class of quantum
states that consists of convex mixtures of Gaussian states, while single photon sources are
pursued for providing stronger quantum resources that allow, e.g., the reconstruction of any
other state. From the detected photons, however, the situation is also far from being ideal.

Clearly, in the most general setting, a SPS has to exclude all fanciful designs, possibly
deviously conceived fake ones, that would give the illusion of good antibunching through
standard g(2) measurements. Brassard et al. (2000) showed that this would open the possibility
for photon-number splitting backdoors, which would allow to hack cryptographic protocols
by encoding the information in N photon states not detectable at the two-photon level. The
conundrum with which we are faced now it the apparent impossibility to observe a source of
light that keeps its photon antibunching, while at the same time emitting the photons in a single
(or at least narrow) line of frequencies. In the next section, I will develop a theory which, using
the homodyning technique brought forward by Vogel (1995), allows to observe simultaneously
these two properties.

3.3 single photons with sub-natural linewidth

Recently, Nguyen et al. (2011) and Matthiesen, Vamivakas, and Atatüre (2012) reported the
observation of a source of single photons, which spectral width is narrower than the natural
linewidth of the emitter. The underlying mechanism is the coherent driving of a 2LS in the
Heitler regime. There, the emission spectrum of the 2LS is given by Eq. 1.47, which describes
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a �-narrow line sitting on top of a Lorentzian with a width given by the decay rate of the
2LS �� . The delta function term is the Rayleigh peak attributed to the elastic scattering of the
laser photons by the 2LS, while Dalibard and Reynaud (1983) showed that the Lorentzian term
comes from the actual photon excitation and re-emission. Note that in the linear regime, and
particularly in the limit ⌦� ô 0, and excluding second order terms (which involve two-photon
states in the detector), the spectrum of emission reduces to the delta function. Furthermore,
since photon correlations of the emitted light are perfectly antibunched (cf. Eq. 1.48), Nguyen
et al. (2011) and Matthiesen, Vamivakas, and Atatüre (2012) claimed that they had a source of
spectrally ultra-narrow single photons. In fact, if one is interested in the spectral density of
isolated one-photon events only, regardless of their time of arrival or their relation to other
photons, the source is effectively providing photons as spectrally narrow as the laser (here
infinitely narrow making the source perfectly monochromatic). However, if such photons are to
be used in temporal relation with others, such as when considering their statistical properties
(such as their antibunching), then the second-order part of the spectrum must be taken into
account. As we have seen in Section 1.2.6, by having the frequency resolution below the natural
emitter linewidth (in order to maintain a narrow spectrum to first order) one filters out part
of the incoherent spectrum which determines its statistics. On the other hand, increasing the
temporal precision—by increasing the frequency resolution of the detector—broadens the
spectrum. As a result, resolving antibunching can be expected to spoil the subnatural linewidth
of the source, and vice-versa. Thus, with the setups used in their experiments, these authors
cannot observe the two properties simultaneously, which means that an object excited with
this light will not observe them either. In the rest of this Section, I will develop a proposal that
allows to obtain such a sub-natural linewidth SPS.

3.3.1 Antibunching in resonance fluorescence and the impact of detection

We are interested in the low-driving regime of resonance fluorescence, i.e., the Heitler (1944)
regime. In this scenario, the emitter is modelled as a two-level system with annihilation
operator � and is driven coherently with a weak laser of intensity ⌦� . We assume that the
laser is exactly at resonance with the two-level transition for simplicity, but everything can be
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Figure 3.3: Schematics of the effect
that filtering has on the emission
spectrum and the photon statistics.
(a) Using spectrally wide detectors to
measure antibunching broadens the
spectrum of emission (solid red) as
compared to the natural linewidth of
the emitter (dashed black). (b) Using
spectrally narrow detectors resolves
well in frequency but spoils the anti-
bunching. (c) Using the scheme pre-
sented in this Section using narrow
detectors, we can have simultane-
ously perfect antibunching and nar-
row spectrum (solid blue).
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easily generalized to the close-to-resonance case by adding a detuning parameter, as shown
by López Carreño et al. (2019). Importantly, we take into account the physical detection of
resonance fluorescence. This is a central point of our approach as it allows us to consider
the physical, self-consistent and complete description of the source. The technical aspects of
how to do this were given in Section 1.2.5, and following these ideas our detector is therefore
considered as an harmonic oscillator, with bosonic annihilation operator a, which makes the full
and self-consistent description of filtered resonance fluorescence an easy theoretical problem.
Indeed, the master equation describing this complete system is given by Eq. (1.40) with ⇠ = �,
�⇠ = �� and �a = �. The Hamiltonian of the system, H = ⌦�(� + �†) + g(a†� + �†a), describes the
laser driving the two-level system (at resonance and with an intensity ⌦� that we consider to be
real without loss of generality) and its coupling to the detector is taken as g (also real). We set
the detector at resonance with both the laser and the two-level system.

The effect that filtering has on the photon correlations of the emitted light can be expressed
in a quantitative way. Let us consider the Nth-order correlation function, g(N)

a , of resonance
fluorescence as measured by a detector with both frequency and time resolution (set at resonance
with the source). The expressions for a general laser driving strength exist but are bulky (see,
for instance Eq. (5.12b) for the case N = 2). However, since in this Chapter were are interested in
the Heitler regime, it is enough to expand these expressions to the lowest order in the driving,
which is, for Ía†NaNÎ, to order O(⌦2N

� ). This allows us to generalize to all orders the expression
for the correlations, which simply reduces to (for N g 2):

g(N)

a =

N*1
«

k=1

�2�
(�� + k�)2

. (3.11)

As expected from del Valle et al. (2012)’s theory, when � ô ÿ, this expression recovers the
perfect antibunching of the source itself, i.e., when the full emission is being detected without
any frequency resolution: lim

�ôÿ g
(N)

a = g(N)

� = 0. In the opposite limit of narrow frequency
filtering, we recover the result for a coherent field: lim

�ô0
g(N)

a = 1 for all N . With the present
semi-classical model for the laser, which has zero linewidth (perfect first-order coherence), we
do not recover the expected thermal value for photons of completely undetermined time of
emission, i.e., lim

�ô0
g(N)

a ë N!, because it is impossible to filter inside a laser width when it is
itself vanishing, as observed by González-Tudela et al. (2013). For a general intermediate �, the
perfect antibunching needed for quantum applications is spoiled: 0 < g(N)

a f 1. For instance,
when filtering at the natural linewidth of the emitter � = �� , we obtain a reduction of 25% in
the antibunching (g(2)a = 1_4) and � = ��_3 leads to g(2)a = 0.56. As a consequence, making use
of the subnatural spectral width of such a SPS, as done by Nguyen et al. (2011) and Matthiesen,
Vamivakas, and Atatüre (2012), which implies detecting its photon with some accuracy in
time and frequency, or coupling its output light to an optical element with � < �� , spoils its
statistical properties. In summary, subnatural linewidth and antibunching are in contradiction
for resonance fluorescence in its bare form. The system emits photons which one can choose
to see, depending on the detection scheme, with the properties of the driving laser or of the
emitter, but not simultaneously.

In order to address this discouraging issue, let us dive deeper into the mechanism that yields
antibunching in resonance fluorescence when integrating over its full spectrum, with � ô ÿ.
This can be understood in terms of interfering fields: Mandel (1982) and Carmichael (1985)
already knew that the emission of a coherently driven two-level system can be expressed as a
superposition of a coherent and a squeezed incoherent field. We apply a mean field procedure
and write � = ↵ + d, with a mean coherent field ↵ = Í�Î and d an operator for the quantum
fluctuations characterized by ÍdÎ = 0. The coherent field is the one that gives rise to the delta
function in the spectrum of emission (1.47) while the Fourier transform of Íd†(0)d(⌧)Î provides
the Lorentzian peak, i.e., the incoherent part of the spectrum, that transforms into the Mollow
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Figure 3.4: (a) Second-order correlation function
of the emission from a two-level system (dashed
black line) and its decomposition Eq. (3.12) into
the four components (solid colored lines) given by
Eqs. (3.13a-3.13c), as a function of the laser excita-
tion. Regardless of the driving regime, the total
emission fulfills g(2)� = 0. In the Heitler regime,
on the left hand side, this is due to a destructive
interference at the two-photon level between the
coherent and incoherent (squeezed) components
of resonance fluorescence. In the strong driving
regime, right-hand side, perfect antibunching is
due to the dominating sub-Poissonian fluctuations.
(b) The same decomposition but now for the filtered
emission g(2)a and as a function of � in the Heitler
regime (⌦� = 10

*3��). In this case, antibunching
gets spoiled as the frequency-resolution is increased
by filtering, leading to an imperfect compensation
of the components. This can however be restored
with an external laser.

(1969) triplet when the intensity of the driving increases. Working out g(2)� in term of this
decomposition results in four contributions:

g(2)� = 1 + I
0
+ I

1
+ I

2
, (3.12)

that grow as powers of ↵:

I
0
=

Íd†2d2Î* Íd†dÎ2

Ín�Î2
= ↵2

6Ín�Î* 4↵2

Ín�Î2
* 1 , (3.13a)

I
1
= 4

R(↵<Íd†d2Î)
Ín�Î2

= 8↵2
↵2 * Ín�Î

Ín�Î2
, (3.13b)

I
2
= 2

↵2Íd†dÎ+R(↵<2Íd2Î)
Ín�Î2

= 2↵2
Ín�Î* 2↵2

Ín�Î2
. (3.13c)

This decomposition is what one would obtain when performing a g(2) measurement on the
output of a beam splitter, that would have � as the associated output arm operator, with
input fields ↵ and d. This is the well known homodyne measurement, first suggested by Vogel
(1991) to analyze the squeezing properties of signal d thanks to the controlled variation of
a local oscillator ↵. The numerator of I

0
in the left-hand side of Eq. (3.13a) is the normally

ordered variance of the fluctuation intensity, i.e., Í:(�nd)2:Î = Í:n2d:Î* ÍndÎ2 with nd = d†d and
�nd = nd * ÍndÎ. Therefore, having I

0
< 0 indicates sub-Poissonian statistics of the fluctuations,

which, in turn, contributes to the sub-Poissonian statistics of the total field �. The numerator
of I

1
in Eq. (3.13b) represents the normally ordered correlation between the fluctuation field-

strength and intensity, Íd†d2Î = Í:�d �nd:Î, to which Vogel (1991) and Vogel (1995) referred
to as anomalous moments. A squeezed-coherent state has such correlations. The numerator
of the last component, I

2
, in Eq. (3.13c), can be written in terms of one of the fluctuation

quadrature X = (d + d†)_2, in the following way: 4↵2
�

Í:X2
:Î* ↵2

�

. If this is negative, there
is some quadrature squeezing.

The four terms of this decomposition for g(2)� are shown in Fig. 3.4(a), as a function of the
intensity of the driving laser. They always compensate exactly and the final result is, of course,
the perfect sub-Poissonian statistics of the two-level system emission. However, as is clear in the
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figure and has been shown by Carmichael (1985), this compensation occurs in different ways
depending on the driving regime:

• In the region of large driving (⌦� ∏ ��), where the spectrum of the emitter displays a
Mollow triplet, we have that I

0
= *1 with I

1
= I

2
= 0 meaning that antibunching appears

solely due to the sub-Poissonian statistics of the fluctuations, that dominate over the
vanishing coherent component lim

⌦�ôÿ
↵ = 0 (and therefore d ô �).

• In the intermediate driving region (⌦� Ì ��), it is I
1
< 0 that almost fully compensates

the positive contributions of 1 + I
0
. This is where I

0
changes sign and the fluctuations

become super-Poissonian.

• In the Heitler regime (⌦� ~ ��) that interests us more particularly, it is the fluctuation
squeezing that plays a major role, being this time the one responsible for antibunching,
I
2
= *(1 + I

0
) = *2.

Note that in the Heitler regime, I
1

vanishes again. Consequently, resonance fluorescence reaches
its maximum squeezing also in this region, an effect that has been confirmed in the emission
from ensembles of atoms by, e.g., Slusher et al. (1985), Raizen et al. (1987), Lu, Bali, and
Thomas (1998), McCormick et al. (2007), and McCormick et al. (2008), and recently on single
atoms by Ourjoumtsev et al. (2011) and quantum dots by Schulte et al. (2015). Another way to
understand the origin of antibunching in this region is as an interference between the coherent
and incoherent parts of the emission (c.f. Eq. (1.47), since those terms which are either purely
coherent (1) or purely incoherent (I

0
), are fully compensated by the 50%-50% mixed one, I

2
.

One can also compute the decomposition for the filtered second-order correlation function g(2)a
by applying again Eqs. (3.13a-3.13c), now with the detector field operators, that is with a ô �,
Ín�Î ô ÍnaÎ and ↵ = ÍaÎ. This is shown in Fig. 3.4(b) for the Heitler regime as a function of the
filter width �. One can see how, with filtering, or equivalently when detection is taken into
account, the terms no longer exactly compensate each other and their sum do not add up to
exactly g(2)a = 0. Speaking in spectral terms, this is because the filter is leaving out some of the
incoherent part that should compensate for the fixed coherent one (the delta function is always
fully included in the convolution with the filter centered at !

L
= 0). In the Heitler regime, this

is clear when � < �� , since �� is the width of the (incoherent) Lorentzian peak, as shown in
Eq. (1.47).

3.3.2 Destructive N-photon interference and antibunching restoration

The decomposition of the filtered second-order correlation function g(2)� outlined above allows
us to determine what is missing in terms of coherent and/or incoherent fractions to produce
the perfect antibunching. Since the compensation comes, in part, from a coherent field, and
such a field is easy to produce and control in the laboratory (with a laser), one can actually
restore full antibunching by superimposing to the filtered resonance fluorescence an external
coherent field �, making them interfere at a beam splitter, and collecting the new signal for
further use or analysis. We can find theoretically the value of � that ensures that the resulting
total field, s = t � + r �. Here, t and r are the transmission and reflection coefficients of the
beam splitter, respectively, taken real and such that r2 + t2 = 1. Although the emission has been
filtered, it still produces perfect antibunching at the output. We will call Ég(2)a the second-order
correlation function of this filtered signal that is interfered with a correcting external coherent
beam, and proceed to show how to cancel it despite the filtering. This, in effect, realises the
previously claimed subnatural linewidth SPS proposed by Nguyen et al. (2011) and Matthiesen,
Vamivakas, and Atatüre (2012). This becomes possible because the source is not a passive object
anymore, that relates time and frequency of its emission merely through the Fourier transform,
but includes a dynamical element. We will see in the following that, as a consequence, our
source even achieves more than joint subnatural linewidth and antibunching.
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Figure 3.5: Scheme of our proposed setup to generate a SPS for which one can simultaneously measure,
in the same experiment and with both time- and frequency-resolving detectors, a narrow spectrum of
emission and perfect antibunching. From left to right: part of the excitation laser (red beam) is attenuated
and ⇡-phase shifted, to later interfere with the resonance fluorescence signal (blue dots). The right-
hand side of the table represents a standard Hanbury-Brown-Twiss setup to measure the second-order
correlation of the total signal

The principle for antibunching restoration is simple: since the filtering reduces the incoherent
fraction, � should lower (proportionally) the coherent fraction. This is possible for two coherent
fields by destructive interferences. That is, given that at resonance ↵ = *i↵, we should find a �
of the form � = i� such that the total mean field is reduced to *i(t↵* r�). Out of resonance,
both ↵ and � have imaginary and real parts but the same idea would apply. This protocol and
the condition for the external �-field are one of the chief results of this text. We now proceed to
describe a possible setup to realise this interference and a theoretical model that provides an
exact analytical condition.

The simplest and most reliable way to interfere resonance fluorescence with a controlled
coherent field is to divert some light from the laser that excites the two-level system in the first
place. In this way, one works with the same coherence time of the driving laser and should be
immune to slow fluctuations. A possible setup is sketched in Fig. 3.5: The laser beam passes
through a first beam splitter, that redirects part of it to the two-level system on one output
arm and to an attenuator and a phase shifter on the other output arm. We have not taken into
account the first beam splitter of Fig. 3.5 in the calculations for simplicity, but, assuming it is
balanced (50:50), doing so would simply rescale the original driving to 2⌦� in order to obtain
the results presented here. The emission of the two-level system (�) and the attenuated laser
(�) are admixed at a second beam splitter. The output constitutes our new antibunched source
s = t � + r �, which can be further analysed, measuring, for instance, its second-order correlation
function in a Hanbury Brown–Twiss setup, as depicted in the figure.

In the theoretical description, we include the detectors in the dynamics to now receive
simultaneously the attenuated laser and the emission of the emitter s = t � + r �. This is modeled
by adding a coherent driving term to the detector Ha = i⌦a(a† * a), substituting H ô H +Ha
in the master equation, with ⌦a À R. Note that the phase of driving to the detector is fixed to
� = i⌦a_g and the resulting Hamiltonian is then H +Ha = ⌦�� + g(t� + ir⌦a_g)a† + h. c. In this
way, the detector is effectively performing a homodyne procedure between the light emitted
by the two-level system and a coherent field with amplitude r⌦a_(tg). Furthermore, our model
describes detection self-consistently and allows us to study the joint dynamical properties (in
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both time and frequency) of the light produced by the superposition. Since we are interested in
the low driving limit, we express ⌦a in terms of ⌦� through a new dimensionless parameter:

F =
r
t
��⌦a
g⌦�

. (3.14)

We also define F
®
= F t_r, which absorbs the dependence on the transmission and reflection

parameters of the beam splitter. We take both F and F
® to be real and positive. With these

definitions, � = i⌦�F ®_�� and it is clear that 100F ® is then the percentage of the laser intensity
that finally interferes with resonance fluorescence, while F is the fraction that is needed to
attenuate the laser for the compensation to be effective. The total mean field of the signal that
exits the beam splitter towards detection (the right-hand side in Fig. 3.5) reads ÍsÎ = t↵ + r� =

*i⌦�t(2*F )_�� .
Next, we solve the new master equation in the Heitler regime, finding that the detected Nth-

order correlation function is

Ég(N)

a = g(N)

a

L
≥N
k=0

�N
k

�

2
k
(*F

®
)
N*k±N*k

�=1 [1 + (N * �)�_��]

(2*F ®)N

M2

, (3.15)

where Ég(N)

a is for the compensated signal and g(N)

a is given by Eq. (3.11). Note that all Ég(N)

a have
a divergence at F

®
= 2, independently of the filtering parameter �_�� . This is another type

of interference related to superbunching, which lies beyond the scope of the present analysis
and is further discussed by Zubizarreta Casalengua et al. (2019a). For N = 2 the correlation in
Eq. (3.15) simplifies to

Ég(2)a =

4

4�� * (4*F
®
)F
®
(�� + �)

(2*F ®)2(�� + �)

52

, (3.16)

which becomes exactly zero when the attenuation factor takes the two values

F
®

2,± = 2

0

1 ±

u

�

�+ ��

1

. (3.17)

This result is valid to first (leading) order in ⌦� , meaning that when the condition (3.17) is
fulfilled, Ég(2)a = 0 with deviations due to higher-order terms in the driving only, so remaining
extremely small. The antibunching becomes “exactly zero” only in the limit of vanishing driving.
In fact, together with Zubizarreta Casalengua et al. (2017), I have shown that if the second-order
correlation function Ég(2)a is exactly zero, then also all higher-order terms would satisfy Ég(N)

a = 0

for N g 2 and provide the ultimate, perfect SPS that emits a Fock state of a single photon. In
the Heitler regime, but with a finite signal, the antibunching remains so small as to be well
approximated by zero on the figures, in contrast to normal resonance fluorescence.

Note that the protocol outlined above becomes meaningless for two extreme cases: in the limit
of broad filters, where we recover perfect antibunching without the interference, lim

�ôÿ F
®

2,* = 0,

and in the limit of vanishingly narrow filters, where lim
�ô0

F
®

2,± = 2 and Ég(N)

a diverges. The
latter case means that if the filter is very narrow, compensating for the loss of the incoherent
component becomes impossible, as one ends up removing completely the coherent component,
thus ending with no signal whatsoever. One can nevertheless reduce the linewidth by over an
order of magnitude as compared to the natural linewidth of the emitter, which amply qualifies
as a subnatural linewidth.

The two solutions in Eq. (3.17) correspond to two different mean fields that, despite hav-
ing different phases, lead to the same intensity in the interference signal, Ís

±
Î = t↵ + r�

±
=

±2i⌦�t_��
˘

�_(�+ ��), and, therefore, both successfully compensate for the incoherent compo-
nent, recovering perfect antibunching for any given realistic detection resolution �. Nevertheless,
they are of a very different character: F ®

2,+ changes the phase of the original mean field, from
↵ = *i↵ to Ís

+
Î = it↵ + r�

+
, while F

®

2,* corrects for the intensity maintaining the same
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Figure 3.6: Comparison between, on the one hand, the Nth-order correlation function for the filtered
light Ég(N)

a with the interference signal, Eq. (3.15), at the condition of perfect antibunching, F ® = F
®

2,*
(solid lines), with, on the other hand, the corresponding case g(N)

a without the interference, i.e., normal
resonance fluorescence (dashed lines). The main panel is in logarithmic scale and the inset in linear scale.
Ég(2)a only appears in the linear scale because it is exactly zero for all �. Panels (a) and (b) show the lines in
Logarithmic and Linear scale, respectively.

phase Ís
*
Î = *it↵ + r�

*
. This manifests in the higher-order correlation functions (3.15): while

evaluating them at F ® = F
®

2,+ does not lead to small values, for F
®
= F

®

2,* they remain close
to zero as well (although in general they do not recover the exact zero). For every N , there
are two values, F ®N ,±, that lead to Ég(N)

a = 0, but they do not imply zero values for the other
functions in general. Remarkably, for a given N and the parameter F ®N ,*, there is always a �N ,N ®

for which also the coherence function N ® is exactly zero, as long as N ® > N + 1. Therefore,
exact zeros are found for pairs of coherence functions, {N ,N ® > N + 1}, when using this par-
ticular pair of parameters {FN ,*,�N ,N ®}. For instance, �

2,4 = ��_24 and �
2,5 = (4 ±

˘

13)��_12.
Since the antibunching obtained with our scheme is due to interference between coherent and
incoherent components and there are only two parameters left in Eq. (3.16), it is reasonable
that the condition Ég(N)

a = 0 can be satisfied for two different N , N ® simultaneously, obtaining
two conditions for F

® and �. Note that, by performing a wavefunction expansion, following the
procedure described by Carmichael, Brecha, and Rice (1991) and Bamba et al. (2011), on the
joint state of the emitter and detector, the attenuation fractions in Eq. (3.17) yield a suppression
of the two-photon probability in the detector. This has also been observed by Zubizarreta
Casalengua et al. (2019a), and it corroborates the idea that perfect antibunching is restored due
to an interference effect at the two-photon level, that is, involving not only coherently scattered
photons but also the incoherent (second order) ones in Eq. (1.47).

In Fig. 3.6, we show the correlation functions for the interfered signal, Eq. (3.15), when the
condition for perfect antibunching is met, i.e., F ® = F

®

2,*, so that Ég(2)a = 0 (solid lines), and
we compare it to the case without the interference, i.e., F ® = 0 (dashed lines), which is the
case from Nguyen et al. (2011) and Matthiesen, Vamivakas, and Atatüre (2012). We plot the
cases N = 2 (blue), 3 (green) and 4 (red), as a function of the spectral width of the detector, �_�� .
Note that the solid blue line does not appear in the main figure, which is in logarithmic scale,
because its value is exactly zero to this order in the Heitler regime. This is the main result as
compared to g(2)a which, although it can get relatively small, can do so only for broad linewidths,
and loses its antibunching for narrow lines. In stark contrast, the perfect antibunching for
the interfered signal remains satisfied even when the filter is much narrower than the natural
linewidth of the emitter. On the other hand, the higher-order correlation functions also yield
noteworthy results, which we will only briefly discuss. In contrast to Ég(2)a which always remain
much smaller than its unfiltered counterpart, there are filter linewidths where the interference
results in larger higher-order correlations as compared to the standard case. This is clear in
the inset of Fig. 3.6 which is in linear scale. If one wants to remain within small values of this
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higher-order functions, this limits how narrow the filtering can be, though still allowing for
considerable improvement. We have also already noted how one is limited by the signal. Finally,
even though perfect antibunching remains true for arbitrarily narrow filters in the theory,
as �~ �� , the system would become unstable under increasingly small variations of the laser
intensity: lim

�ô0
F
®

2,* = 2, which is a diverging point for Ég(2)a (⌧). Zubizarreta Casalengua et al.
(2019a) have shown that a small fluctuation in the laser intensity would bring the system from
perfect antibunching to a huge superbunching. This could be seen as an advantage, providing
a highly tunable quantum photon source that can be switched between antibunching and
bunching by slightly adjusting the second laser attenuation. However, this superbunching effect
also follows from an interference and is not linked to N-photon emission or other types of
structured emission.

A representative filter linewidth for optimal operation can be taken as � = ��_5, which we
also use as the reference case in the following figures, because it is well below the natural emitter
linewidth and brings an improvement essentially everywhere, i.e., we find that the interference
yields the values Ég(2)a = 0, Ég(3)a = 0.36 and Ég(4)a = 0.08 while without the interference, one gets
g(2)a = 0.69, g(3)a = 0.35 and g(4)a = 0.14. Note also the existence of a second local minimum for
Ég(4)a in Fig. 3.6. We find that there is such a local minimum for all higher-order correlators except
the one that immediately follows the one that is exactly cancelled by the interference (i.e., Ég(3)a
in this case).

Further discussion of the quantum state generated by this interference would lead us too far
astray. Furthermore, in the light of the effect that filtering the light has on its statistics, and the
way in which the photon correlations can be corrected to restore the antibunching, we now turn
to the criteria that can be used to quantify: i) how well the sources provide single photons, and
ii) how close they are to being an ideal source of single photons.

3.4 criteria for single photon sources

In the previous two sections we have insisted in how relevant it is to take into account the
detection in the description of the emission of light, and how the apparent perfect antibunching
from the archetype of SPS can be spoiled by observing it. In this section I will propose two
criteria that can be used to characterize SPS and to quantify their single-photon “purity”.

3.4.1 According to the photon correlations

The discussion that we had in Section 3.2 led us to conclude that when the detection process is
taken into account, the suppression of the second-order correlations function is not enough to
guarantee the single-photon character of a stream of photons. Conversely, one needs to strive
for the suppression of the photon correlations to all orders. Thus, we propose a novel criterion
to identify and compare usefully SPS which does that. Namely, we propose the N-norm of the
vector of correlation functions:

Ò(g(k)a )ÒN í
N

y

x

x

w

N+1
…

k=2
g(k)N , (3.18)

that quantifies the deviation from the ideal SPS, perfectly antibunched to all orders. The criterion
is then that Ò(g(k)a )ÒN should be as small as possible (not simply the g(2), which is the 1-norm) for
N as high as technically feasible. In the limit N ôÿ, the quantity becomes Ò(g(k)a )Ò

ÿ
= max(g(k))

and measures the failure of the SPS by the order at which it less suppresses multiple-photon
emission.

In Fig. 3.7, we show the result for several popular sources, limiting to the 3-norm (i.e.,
measuring up to g(4)a ), which is enough for the chosen cases that do not engineer scenarios
where the SPS breaks for large photon numbers. This is as a function of the spectral filtering
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bandwidth, that, as already discussed, is a key parameter for photon correlations, and we will
describe a realistic experiment. The incoherently driven 2LS sets a useful reference. As the
filtering window is enlarged, our measure in Eq. (3.18) indeed decreases. The coherently driven
2LS, in comparison, decreases much faster, and this confirms the known fact that resonant
excitation provides better antibunching than the non-resonant case. This is the case at low
driving, since at high driving, the system enters the Mollow (1969) triplet regime, and the
photon correlations vary strongly with their frequency, thus spoiling its SPS attributes. The
cascading scheme I proposed, in which a 2LS is driven by the emission of another 2LS driven
by the emission of a third 2LS, and which I will discuss in details in Chapter 6, is confirmed as
a better SPS than under classical resonant driving, although the slope is the same as for the
conventional case. The slope, however, can be enhanced through the interferometric scheme that
I proposed in Sec. 3.3. This source (shown in Fig. 3.7 as a solid red line) provides the smallest
3-norm down to �_� ˘ 1_5, when it is surpassed by the 2LS driven either with a coherent
or an incoherent emitter. However, at such a filter width the 3-norm of these three sources is
already ˘ 1. Therefore, the source described in Sec. 3.3 is in fact the best SPS of our selection.

A value of this criterion resides in its identification of sources with a strong two-photon
antibunching (small g(2)) but that fail to higher orders. This the case for instance of a biexciton,
i.e., a molecule binding two excitons (electron-hole pairs). It supports two excitons with opposite
third component of the angular momentum, with annihilation operators �~ and �ö. The linearly
polarized states of the biexciton system, namely �

H,V = (�~ - �ö)_
˘

2, describe transitions
from the exciton to the ground state emitting a vertically and horizontally polarized photon,
respectively. To test the biexciton as a SPS, we drive it coherently with a vertically polarized
laser of intensity ⌦� and in resonance with the exciton transition. The Hamiltonian describing
the biexciton is given by H

B
= (!� *!L

)(�†~�~ + �
†

ö�ö)* �(�
†

~�~�
†

ö�ö) +⌦�(�
†

V
+ �

V
) where !� is

the bare exciton energy (we consider resonant excitons), !
L

is the frequency of the driving laser
and � is the bonding energy, so with biexciton energy 2!� * � . The biexciton is described by
the master equation Eq. (1.44) replacing H� by H

B
, and with exciton decay rate �� for both

polarizations. Figure 3.7 shows that the 3-norm for the biexciton emission saturates above the
measure set by the incoherently driven 2LS. This means that, as expected, the biexciton is not a
good SPS. Figure 3.7 also shows that the asymmetry in the driving field favors the vertically

Coh. driven 2LS

Mollow triplet

Sub. 2LS
Cascaded 2LS

Det. photon blockade

Vertical biexciton
Conventional Polariton blockade

Unconventional Polariton blockade

Inc. driven 2LS

Horizontal biexciton

i

Figure 3.7: 3-norm for several sources of light as a function of their spectral filtering. The incoherently
driven 2LS (in the limit of P� ~ ��) is set as the benchmark for SPS. It is always surpassed by the coherently
driven 2LS and the cascaded 2LS as long as ⌦� ~ �� . The emission of the biexciton (with �_�� = 40 and
⌦�_�� = 10), on the other hand, fails to overcome the benchmark in either polarization. The blockade
mechanisms provide better antibunching in the limit of vanishing �, but fail as SPS in the opposite limit.
Here � is meant as either �� or �a depending on the system. Panel i shows a zoom in linear scale of the
limit of �_� = 10

*2.
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polarized emission over the horizontally polarized one. In fact, for a large region of values for
�_� , the vertically polarized emission of the biexciton is a better SPS than the central peak of
the Mollow triplet.

Another striking case is the so-called “polariton blockade” (also known as “photon blockade”),
first described theoretically by Verger, Ciuti, and Carusotto (2006) in its conventional version,
and by Liew and Savona (2010) in its unconventional form. In the former case, antibunching
follows from self-interactions (polaritons in this context are essentially strongly interacting
photons), while in the latter case, a much stronger antibunching is obtained at vanishing
pumping from an interference. Calling a and b the annihilation operators of two polariton
modes, the Hamiltonian reads

H
P
= (!p *!L

)(a†a+ b†b) + g(a†b+ b†a) +U (a†a†aa+ b†b†bb) +⌦a(a† + a) , (3.19)

where !p is the polariton energy, g is the coherent coupling between polaritons (e.g., by
tunneling), U is the strength of polariton interaction, �a is the polariton decay rate and ⌦a is
the intensity of the laser driving one of the polaritons. This Hamiltonian covers both types of
blockades depending on the frequency of the excitation and the coherent coupling. Figure 3.7
shows that the conventional polariton blockade (obtained by setting the laser in resonance
with the first rung of excitation and g = 0 in Eq. (3.19) to keep only polaritons a) behaves
differently from the other SPS, as it remains roughly constant as more light is collected. The
situation is even more serious for the unconventional polariton blockade that, contrary to a
popular belief that made its manifestation actively sought after, performs rather poorly as a
SPS, in particular in the configuration where its g(2)a is very small. Indeed, despite its excellent
antibunched g(2)a emission, it also exhibits a superbunched g(k)a for k g 3 and its ÿ-norm actually
diverges, therefore failing to behave as a SPS for most of the values of U_�a, including that
where g(2)a ~ 1. Such a distinction between the two types of blockades is shown in Fig. 3.8,
comparing all Ò(g(k))Òp for p = 1,… , 4 and this time as a function of the interaction strength
(normalized to the broadening) U_�a. The dashed lines correspond to the conventional blockade
and show an essentially converged result regardless of p, indicating that the conventional
blockade is a SPS that gets increasingly (albeit slowly) better with increasing nonlinearity. On
the other hand, while the unconventional blockade is much better as perceived through the
1-norm (the conventional g(2)a , this is the result hailed in the literature), it is quickly spoiled
at the 2-norm level, particularly at the value of U_�a that minimizes g(2)a . I have shown with

i

Figure 3.8: Comparison of the Ò(g(k))ÒN for the conventional (dashed) and unconventional (solid) polariton
blockade (Parameters as taken by Lemonde, Didier, and Clerk (2014), i.e., �a = �b, !_�a = 0.275 and
g_�a = 3). The filtered 3-norm in Figure 3.7 is for U_�a = 0.0425 that minimizes g(2). Panels i shows a
zoom in linear scale of the limit of U_�a = 0.
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Zubizarreta Casalengua et al. (2019a) that it has a range of convergence and is a better SPS
than its conventional counterpart (dashed line), but in a different configuration than the one
aimed for (dotted line) and this would be overtaken by the conventional blockade for stronger
nonlinearities.

With the criterion in Eq. (3.18), one can weight the assets from various approaches. For
instance, the bare 2LS presents the shortcoming of emitting in a large solid angle and placing it in
a cavity brings several advantages, such as increasing its emission rate by Purcell enhancement,
but also for practical purposes, in collecting and directing the light in a focused output
beam. One can ask whether this has a cost in other aspects and weakens the suppression of
multiple-photon emission as compared to bare SPS. We find with Eq. (3.18) that in the limit of
weak-coupling and fast decay rate of the cavity, the impact is negligible, which is a welcome
result as this configuration is widespread. More involved designs, such as the one proposed
by Müller et al. (2015), can optimize the combination of these aspects in other configurations,
for instance the detuned photon blockade proves to remain an excellent coherently driven SPS
within a cavity, making such an implementation a serious contender for future applications.

3.4.2 According to the temporal structure

Independently of how bright, antibunched or indistinguishable are the photons emitted by any
SPS, for many practical applications one would also like to know the time at which the photons
are going to be emitted; or equivalently the delay between consecutive photons. For instance,
if a SPS emits N photons per second, then, we know that on average we will have one photon
every 1_N seconds. However, the emission rate does not provide any information about the
temporal structure of the emission, like its standard deviation of the time-separation between
consecutive photons: a laser emitting its photons randomly and a pulsed source emitting its
photons equally spaced in time can have the same emission rate, but the standard deviation in
the delay between consecutive photons is drastically different. Clearly, having the same emission
rate, the source emitting its photons periodically in time is a better candidate for applications, as
the emission time of the photons can be predicted. Thus, we can use the standard deviation in
the delay between consecutive photons as another criterion to classify sources of single photons.
The comparison of the variances is only meaningful when the means (that is, the emission rate)
is equal. Therefore, we will use the standard deviation of the times between successive photons
normalized to the emission rate as follows:

�
2
(⌧) =

y

x

x

x

w

⇠

≥N
k=1 ⌧kN_T * 1

⇡2

N * 1
, (3.20)

where ⌧ = {⌧
1
, ⌧

2
,5 ⌧n} is the collection of all the delays between consecutive photons, N is

the total number of photons and T the time it took the source to emit all the photons. The
factor N_T is the emission rate of the source, and if the emitted photons are emitted equally
spaced in time, then ⌧kN_T = 1 for every ⌧k and the criterion becomes �

2
= 0.

To the best of my knowledge, there is no physical system that naturally provides single
photons separated equally in time. However, we can get close to it under controlled conditions
by considering a 2LS driven coherently with a ⇡_2-pulse with a �-profile. The area of the pulse
guarantees that the 2LS is left in its excited state, and the shape of the pulse minimizes the
delay between the arrival of the pulse and the excitation of the 2LS. Once the 2LS is excited,
it relaxes to its ground state emitting a single photon. This process takes place in the form of
spontaneous emission, which is inexorably statistical, and the probability that the photon is
emitted at some time t after the 2LS has been excited is given by

p�(t) = �� e*��t , (3.21)

where �� is the decay rate of the 2LS, and 1_�� is the mean time at which the photons are
emitted from the 2LS. Even if the 2LS is driven by a series of pulses, each of them separated
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from the previous one by a fixed time �t, the delay between two consecutive single photons
emitted by the 2LS will not be constant. In fact, the photon emitted from the kth pulse will
be emitted at some time tk = k�t+ �tk, while the consecutive photon will be emitted at some
other time tk+1 = (k+ 1)�t+ �tk+1, where both �tk and �tk+1 are random variables following the
exponential distribution in Eq. (3.21). Thus, the delay between consecutive photons is given by

⌧k = tk+1 * tk = �t+ (�k+1 * �k) . (3.22)

While �t is a constant, (�k+1 * �k) is a random variable following the probability distribution

p�(t) =
1

2��
e*t�� , (3.23)

which standard deviation is
˘

2. Using the expression of the delay between consecutive photons
in Eq. (3.22) to compute the standard deviation in Eq. (3.20), we find

�
2
(�t) =

v

≥N
k=1[(�k+1 * �k)_�t]2

N * 1
=

˘

2

�t
, (3.24)

where we have used N_T = 1_�t, and which is the trend for large values of ���t in Fig. 3.9(a).
In the limit in which the product between the decay rate and the separation between consecutive
pulses is very large, the �

2
criterion becomes increasingly better: as the separation between

pulses is increased, the relative uncertainty of the photon emission from the SPS becomes
smaller, thus reducing the jitter of the source. Conversely, the behaviour of our criterion changes
when the time difference between consecutive pulses is less than 1_�� . In such cases, the
probability that the 2LS is still in its excited state when another pulse arrives is non-negligible.
As a result, the sequence of equally spaced photons is spoiled and the �

2
goes towards one.

The way in which the �
2
-criterion is sensitive to missing photons from the otherwise series of

perfectly separated single photons is shown in Fig. 3.9(b) as a function of the percentage of
photons removed from the stream. The line shown was obtained directly from a Monte Carlo
simulation, and can be fitted exactly with the relation

�
2
(pr) =

t

pr + �22(pr = 0) , (3.25)

where pr is the percentage of photons removed from the stream and �
2
(pr = 0) is the value of

the standard deviation when no photons are removed. Therefore, even if the 2LS is driven by a
series of pulses evenly distributed in time, the delay between two consecutive single photons
emitted by the 2LS will not be constant.

The discussion above is valid for an ideal source operating in the regime of pulsed excitation.
However, ideal sources are seldom realisable in a laboratory. Instead, the best we can aim for is
to find the source which most resembles the ideal one. In particular, we focus on the sources
working at continuous excitation. In agreement with the results of the previous section, the
incoherently driven 2LS is the CW source most similar to an ideal SPS. Figure 3.9(c) shows
the normalized variance of the emission time as a function of the intensity of the incoherent
driving, for several filtering widths. Independently of the spectral width of the detector, we
find that there is always an ideal driving intensity that minimizes the disorder in the emission
time of the photons. In fact, when the detector is color blind, the ideal driving rate matches
the decay rate, in a configuration that keeps the 2LS with an average occupation of exactly 1_2.
However, the ideal rate decreases as the width of the filter is reduced, and the state of the 2LS
becomes thermal (cf. Fig. 3.2(a)), as the variance of the emission time of the photons is less
affected by the lack of signal than by the large fluctuations of a highly populated thermal state.

3.5 conclusions

In summary, we have discussed quantitatively the effect that filtering has on the statistical
properties of the light emitted by single-photon sources. We have shown, that the setups
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(a) Figure 3.9: Criterion for single photons equally
spaced in time �2. (a) The jitter of a pulsed 2LS can
be reduced arbitrarily, simply by increasing the time
between consecutive photons, as compared to the
exponential time it takes the 2LS to emits its photons.
(b) The criterion is also sensitive to photons missing
from the emission, which is comparable to a real
detector that misses some of the photons emitted by
the source. (c) The CW-source that comes closer to
emit its photons in a periodic way is the incoherently
driven 2LS, albeit with a minimum �2 ˘ 0.6.

proposed by Nguyen et al. (2011) and Matthiesen, Vamivakas, and Atatüre (2012) are not
actually providing single photons with a ultra-narrow linewidth, because, in their setup, these
two properties cannot be measured simultaneously. Nevertheless, we developed a theory which,
using the homodyning technique introduced by Vogel (1995), allows the realization of a sub-
natural linewidth single photon source. Furthermore, we studied the quantum non-Gaussian
character of a 2LS and how filtering and/or finite-detector resolution affects its qualities as a
SPS. We proposed a criterion to quantify its performance: the N-norm of the photon correlation
functions. For practical purposes, it is convenient and often enough to limit to the 2-norm or
3-norm. On the other hand, we showed that g(2)a alone (the 1-norm), which is the widespread
standard, is not sufficient and can lead to erroneous assessments. We illustrated the criterion
with a variety of SPS mechanisms and found that the best realizations are obtained with
yet-to-be-implemented SPS (such as the cascaded configuration of two-level systems and the
subnatural-linewidth SPS), resonance fluorescence at low driving is the best already existing
SPS. We also showed how other sources that appear to be good SPS do actually fail in a stricter
sense that could jeopardize quantum information protocols. Beyond a criterion considering
the correlations among the photons emitted by the SPS, we further discussed a criterion in
the context of the distribution of the temporal separation of consecutive photons. For many
practical purposes the ideal SPS is deterministic, in the sense that its photons are emitted at
constant intervals. Such an ideal source sets the benchmark with which we can compare realistic
sources. We find that in this respect, a two-level system driven with �-pulses separated by a
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time larger than its inverse decay rate can get arbitrarily close to the ideal SPS. In the regime of
continuous wave excitation, the best source is a 2LS driven incoherently.
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4
M U LT I - P H O T O N L I G H T

No tengo forma de saber si los eventos que
estoy a punto de narrar son efectos o causas.

— Jorge Luis Borges

4.1 introduction

In the previous chapter, we have seen that the interferences between the absorbed and emitted
light from a two-level system (2LS) in the Heitler regime leads to counter-intuitive effects, which
Aharonovich, Englund, and Toth (2016) have used to power one of the best mechanisms for
single-photon emission. In this Chapter, I will still consider the emission from a 2LS driven
coherently by a laser, but this time in the high excitation regime, in which the emission spectrum
is the Mollow (1969) triplet, that was shown in Section 1.2.6. Such a triplet structure, obtained
when considering first-order observables, unfolds into a rich landscape of correlations when one
considers second-order observables, as shown in Fig. 1.15(b). Using the dressed atom picture
introduced by Cohen-Tannoudji and Reynaud (1977) and Reynaud (1983), and summarized in
Section 1.2.6, it is easy to understand the structure of the two-photon spectrum of the Mollow
triplet, and in particular the emission of highly correlated photons pairs that takes place at
the frequency halfway between the central and the lateral peaks of the triplet. Sánchez Muñoz
et al. (2014a) showed that coupling a cavity in resonance with this frequency enhances the
emission of these photons pairs. As these photons are the result of a transition through virtual
states, the pair of photons are emitted simultaneously and the system becomes a source of
two-photon bundles, thus upgrading the fundamental quantum of light to two photons. With
sufficient-enough coupling strength to dissipation ratio, the emission from the system consists
in a 100% emission of photon bundles. Four years later, Sánchez Muñoz et al. (2018) have shown
how to reach this regime in the bad-cavity limit, with system parameters already available as of
today.

The objective of this Chapter is twofold. Firstly, I will show that the bundling from the
Mollow triplet is not restricted to the case of degenerate photons, and discuss the implications
of considering virtual processes that occur over an arbitrary number of excitation manifolds
with no constrain on the photons’ frequencies. In particular, I will show that the transitions in
which not all the photons have the same frequencies are interesting, as one of the photons from
the bundle could be used to herald the emission of the rest of photons from the bundle: thus,
one can imagine scenarios in which an N-photon bundle is broken down in such a way that
one photon heralds N * 1, or two photons herald N * 2 and so on. Secondly, I will show that
considering the dressed atom picture sometimes leads to wrong conclusions, as one is more
prone to (unwillingly) consider N-photon transitions which become resonant to a real state and
lose their correlations. In contrast, I will consider a map of correlations considering a second-
order correlation function, similar to Eq. (1.33) defined for individual photons, considering the
correlations between a photon of frequency !

1
and a N-photon bundle of frequency !

2
, thus

upgrading the system to a heralded source of N-photon bundles.

4.2 leapfrog processes

The transitions that give rise to the antidiagonal lines of superbunching in the 2PS, shown in
Fig. 1.15 and described through Eq. (1.51), are a particular case of a general set of transition

73
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involving N photons and N *1 excitation manifolds. These photons satisfy the general condition

É!
1
+ É!

2
+5+ É!N = � , with � = {*⌦

+
, 0,⌦

+
} , (4.1)

where É!i = (!i *!L
). This is a simple generalization of the expression given in Eq. (1.51) for the

case of two photons only but one of great consequences. The parameter ⌦
+

is the separation
between the central and the lateral peaks of the Mollow triplet and, while in the regime of very
high excitation (when ⌦� ∏ ��) the splitting is given by ⌦

+
˘ 2⌦� , in general it is given by
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with ⌦2

0
í 4⌦

2

� + É!2

� . Note that the transitions in Eq. (4.1) can also be satisfied by photons
transiting over real states. For instance, there is a strong difference between +Î ô ±Î ô *Î (a
transition that is a cascade between real states) and +Î – *Î (a leapfrog transition that involves
a virtual state). In a cascade between real states, each photon is real and the first transition
takes place independently from the second. The correlations are thus of a classical character:
the second transition becomes more likely simply because the first one reached the state that
allows it to take place. In the other case of a leapfrog transitions, the two photons are emitted
simultaneously, with stronger correlations as the joint emission is intrinsic to the process. Thus,
also at the N-photon level, the stronger correlations correspond to the transitions in which all
the intermediate photons are virtual, in which case we refer to an “N-photon leapfrog”.

These leapfrog processes can be singled out from the total emission by spectral filtering,
to select the frequencies where the corresponding photons are expected to be emitted. As is
characteristic of a quantum system, the combinatorics aspect quickly becomes overriding in the
description of the phenomenology. At the two-photon level, the picture is fully captured by the
two-photon correlation spectrum, shown in Fig. 1.15(b). This case has been widely discussed in
the previous Chapters, so I consider directly the next order, for which the standard correlation
function was provided for Glauber (1963) for order three (given in Eq. (1.32) for N = 3),
which, with frequency filtering, becomes g(3)

�1,�2,�3
(!

1
, t
1
;!

2
, t
2
;!

3
, t
3
), given by Eq. (1.42) by

setting N = 3. Assuming that the three detectors have the same linewidth and considering
the case of coincidences, t

1
= t

2
= t

3
, we arrive at a 3D correlation spectrum g(3)

�
(!

1
,!

2
,!

3
), a

section of which is shown in Fig. 4.1 (the details of its computation are given in the next Section).
It is not easy to visualize a three-dimensional correlation structure, but we can nevertheless
characterize it fairly comprehensively. It consists essentially of leapfrog planes of superbunching,
which, following Eqs. (4.1), read at the three-photon level

É!
1
+ É!

2
+ É!

3
= � , (4.3)

but also, as revealed by the exact calculation, of the families of planes defined by

É!
1
+ É!

2
= � , É!

1
+ É!

3
= � , É!

2
+ É!

3
= � , (4.4)

where in each case � is one of the three combinations of initial/final states transitions, i.e.,
� = *⌦

+
(the red planes in Fig. 4.1(b–e)), � = 0 (blue) and � = ⌦

+
(yellow). The planes from

Eq. (4.3) are the three-photon leapfrogs where all the intermediate photons are virtual, as
shown in the upper part of the dressed states ladder in Fig. 4.1(f). The planes from Eqs. (4.4)
correspond to three-photon correlations that involve two two-photon leapfrog transitions linked
by a cascade, namely, with two photons belonging to one two-photon leapfrog transition while
the third comes from another two-photon leapfrog transition. Alternatively, this can be seen
as a four-photon leapfrog transition that intersects a real-state, breaking it in two two-photon
leapfrog transitions. This is shown in the bottom of the ladder in Fig. 4.1(f). It is at this point
that the concept of a “bundle”—the N-photon object issued by a leapfrog transition—becomes
handy. The planes in panels (c–e) thus correspond to a bundle-bundle radiative cascade in the
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(b) (c)

(d) (e)

(f)(a)

Figure 4.1: High-order correlations from N-photon transitions in the Mollow triplet. (a) The 3rd-order
correlation function g(3)

�
(!1,!2,!3) is shown as a two-plane cut in the full-3D structure. The vertical plane

is pinned at a leapfrog transition while the horizontal plane is pinned at the central peak. The lines
observed are superbunching resonances that result from the intersections with the leapfrog planes given
by Eqs. (4.3a)-(4.3d), and displayed in panels (b-e), respectively. The colors correspond to the different
values of �, namely ⌦+ (shown in yellow), 0 (blue) and *⌦+ (red). The leapfrog transitions involved are
shown in the ladder of dressed states in panel (f). At the top, the three-photon leapfrog, Eq. (4.3a), yield
the planes shown in (b). At the bottom of the ladder, the cascades of two two-photon bundles, out of
which three photons yield the planes shown in (c-e). Panel (a) was obtained for ⌦+ = 300�� , É!� = 200��
and � = 5�� , setting the decay rate �� of the 2LS as the unit.

ladder, the same process as that discussed by Cohen-Tannoudji & Reynaud in the dressed-atom
picture, but here for two-photon bundles instead of two single-photons. The plane in panel (b)
correspond to a single three-photon bundle transition. The fact that four photons can team
up in this way to provide correlations that appear in the three-photon spectrum g(3)

�
is first

and foremost a result of the exact computation, that can be understood in terms of leapfrog
transitions, which, in turn, can make predictions that exact computations can subsequently
confirm, as will be shown later on. The four-photon transitions sketched in Fig. 4.1(f) are the
only possible ones to account for the observed leapfrog planes (c-e). If one photon would
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correspond to a transition between real states, we would observe lines instead of planes. A
four-photon bundle on the other hand would not constrain two frequencies, as is the case
of Eq. (4.4) and, beside, Laussy et al. (2012) discussed how a fourth-order process is not
detectable by a third-order correlator. Since all the observed resonances are accounted for by the
processes highlighted and that, in turn, all these processes produce a resonance in the computed
correlation spectrum, we have found a one-to-one mapping between the numerically exact
calculations and a simple physical model, and the characterization of the photon correlations is
indeed comprehensive. Before turning to these exact calculations, I illustrate how the powerful
dressed-atom picture also allows us to make some qualitative statements on the expected
behaviours at the bundle level. Specifically, let us consider degenerate N-photon bundles, i.e.,
with all photons having the same energy. Such bundles need to change the state of the 2LS, for
otherwise they break into real-state transitions. There are therefore two types of such degenerate
bundles, those with photons of frequency *⌦

+
_N and those with photons of frequency ⌦

+
_N .

Now, for the same reasons as for single photons, one can expect for two bundles of the same
type to be antibunched, as the 2LS has changed state, whereas two bundles of a different type
will form a cascade and can be expected to be bunched. Note that such a behaviour holds at the
level of the bundles rather than at the level of the photons themselves, that should be bunched
in all cases. Such “predictions” from the leapfrog picture are confirmed by exact computations.

To get a more quantitative picture, we need to turn to an exact theory of frequency-resolved
three-photon correlations, that I will present in next Section. Importantly, this will confirm that
the leapfrog transitions in Eqs. (4.3) are the main three-photon relaxation processes.

4.3 theory of frequency-resolved n-photon correlations

The correlations between N photons detected in as many (possibly degenerate) frequency
windows as required, without restricting ourselves to the peaks, can be computed exactly with
the theory of frequency-resolved correlations outlined in Section 1.2.5. Thus, the two-photon
(Fig. 1.15(b)) and three-photon (Fig. 4.1) frequency-resolved correlations can be obtained as
particular cases of the general expression given in Eq. (1.42), namely
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I have assumed for brevity only the case where all the filters have the same linewidth, although
one can further enhance the correlations by optimizing the filters linewidths to match the
width of the selected resonances. The case of different filter linewidths is further discussed by
González-Tudela, del Valle, and Laussy (2015) in the case of two-photons, but I will not address
it here for N-photons. One can therefore consider in the following that there is still room for
further improvement.

A particular case of interest is the autocorrelation g(N)

�
( É!) when all the frequencies are

degenerate, É!
1
= 5 = É!N . This corresponds to the correlations, at various orders, of the light

passing through a single filter. The cases up to fourth order as computed with the sensors
technique are shown in Fig. 4.2. Panel (b) confirms the known results obtained by Aspect
et al. (1980), Schrama et al. (1992), and Ulhaq et al. (2012) of antibunching for the side peaks,
and also of bunching for the main peak (g(2)

�
( É! = 0) ˘ 1.05 with our parameters, see caption).

Strikingly in the latter case, it is revealed that, in the full picture, this bunching actually sits
in a local minimum and that, although the central peak is indeed bunched, this comes in
a region of suppressed bunching, as shown in the inset of Fig. 4.2(b) (zooming in the area
indicated by the arrow). This feature is not fully conveyed by the dressed-atom picture. The
most notable feature, however, is one that remained unnoticed until the numerically exact
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(b)

(c)

(d)

(a)

Figure 4.2: Correlations between bundles of N photons. (a) Photoluminescence spectrum of the Mollow
triplet, with the configuration of filters that has been proposed for single photon heralding by Schrama
et al. (1992), namely, filtering the two side peaks. (b–d) 2, 3 and 4-photon autocorrelation spectrum. The
resonances in the photon correlations reveal the frequencies where the same type of heralding but for
N-photon bundles can be achieved. Such frequencies, shown here in gray, are given by É! = ±⌦+_N
at order N . In red are shown the even better configuration where the heralding does not involve any
transition through a real state. The inset in Panel (b) shows a zoom of the correlations nearby the central
peak, marked by an arrow, revealing bunching to sit on a local minimum. The decay rate of the 2LS sets
the unit, the splitting of the triplet is set to ⌦+ = 300�� , the sensors linewidth to � = 2�� , and the detuning
between the laser and the 2LS to É!� = 200�� .

calculations of González-Tudela et al. (2013): the two strong resonances that sit between the
peaks. These are the leapfrog correlations. Similar results are generalized when turning to higher
orders, as shown in panels (c) (three photons) and (d) (four photons). While the correlation
of the peaks retain the same qualitative behaviours, new features thus appear away from the
peaks, associated to the leapfrog transitions, successively captured by increasing the order of
the correlations. These resonances, at ±⌦

+
_N , pile up toward the central peak, and become

increasingly difficult to access individually, as however can be expected from such strongly
quantum objects involving a large number of particles.

While these cuts in the N th-order correlation spectrum are useful and will be later referred
to again—being so-closely connected to degenerate bundles—they provide a very simplified
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Figure 4.3: Filtered single-photon correlations
from the emission of, (a) the opposite side-
bands, and, (b) the two-photon leapfrogs.
Panel (a) shows the exact behaviour at reso-
nance (solid blue) and with detuning (solid
red), and compares it with the approximated ex-
pressions given by Schrama et al. (1992), shown
as dashed blue and dashed red, respectively.
Panel (b) shows the filtered correlations from
the same two-photon leapfrog (shown in red
at resonance and in green with detuning) and
from the leapfrogs at opposite sides of the cen-
tral peak (shown in orange at resonance and
in blue with detuning). The curves essentially
overlap, meaning that, thanks to the nature of
the leapfrog transition, the choice of configura-
tion in which a two-photon bundle heralds an-
other one is not very important. The decay rate
of the 2LS sets the unit, ⌦+ = 300�� , � = 5��
and in the cases with detuning É!� = 200�� .

(a)

(b)

account of the structure of the correlations at the N-photon level. The case for N = 3 photons,
displayed in Fig. 4.1(b) in two planes that intersect the full 3D spectrum, provides the full
picture at this order, on the basis of which one can best exploit the photon emission. I will not
discuss the antibunching patterns, whose intersections in the density plot produce in addition
to straight lines, also a circular shape which physical origin is interesting but beyond the scope
of my Thesis. We will now discuss how intercepting the red superbunching lines in the general
three-dimensional space, that originate from the leapfrog planes in panels (b–e) of Fig. 4.1,
allows to design a new family of heralded N-photon emitters.

4.4 sources of heralded photons

With the formalism introduced in previous Sections, it is straightforward to compute the exact
frequency-resolved peak-peak correlations studied theoretically by Schrama et al. (1992) and
Nienhuis (1993) and experimentally by Ulhaq et al. (2012). This includes their time-resolved
version, beyond the coincidences that we have considered so far. The theory then needs
to take proper care of time-ordering, which is however easily achieved with the technique
presented in Section 1.2.5. Since we consider here a system in its steady state, only relative time
differences ⌧ í t

2
* t

1
are of interest. Some frequency- and time-resolved correlations for the

Mollow triplet are shown in Fig. 4.3(a), at both resonance (blue curve) and with a detuning
between the 2LS and the laser (red curve). We compare the exact (solid) and approximated
(dashed) solutions, obtained through the sensing formalism and the earlier theories, respectively.
There is an excellent qualitative if not quantitative agreement. In the case of laser detuning, the
asymmetric shape lends itself to heralding purposes, whereby detection of a photon from the
high-energy peak correlates strongly with the detection of another photon from the low-energy
peak.

As already emphasized, the great advantage of the theory of frequency-resolved photon
correlations from Section 1.2.5 is that it also allows to compute exactly correlations in more
general configurations than those restricted to the peaks. For instance, correlating the photons
emitted by the leapfrog processes, by filtering at the corresponding frequencies, one gets the
correlation function shown in Fig. 4.3(b), with several notable features, all in line with the
quantum nature of these transitions. Namely, the correlations
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• are much stronger (about 50 times larger) than those of the photons emitted through real
states, as shown in panel (a),

• they have smaller correlation time (and thus yield better time resolutions),

• they do not depend much on detuning,

• they do not depend much on the choice of configuration (degenerate bundles or not), and

• they are symmetric in time.

Note that symmetric correlations are not detrimental for heralding, as the instantaneous
character of the emission allows to delay one channel and thus keep the other as the heralding
one. One obvious drawback of such strongly-correlated emission is the much reduced signal,
since the collection is made away from the peaks. While there are ways to circumvent this
limitation, for instance by Purcell-enhancing them with a cavity of matching frequency, as has
been done by del Valle (2013), Sánchez Muñoz et al. (2014a), and Sánchez Muñoz et al. (2015),
we will remain here at the level of describing the naked correlations. Now that we have shown
the new perspectives opened by the leapfrog process at the two-photon level, we focus on more
innovative aspects.

4.5 sources of heralded bundles

The powerful dressed-atom picture allows a straightforward generalization of the heralding
discussed in the previous Section. One can contemplate the configuration where a photon
heralds a bundle in the radiative cascade down the ladder, as shown in case i of Fig. 4.4(c).
This is the same idea as Ulhaq et al. (2012)’s heralding a single-photon, but now heralding a
bundle instead. Even better, however, is to consider a three-photon leapfrog where all photons
are virtual, and use one of them to herald the other two, a sketched in case ii. Conveniently,
one can use the heralding photon to have a different energy from the two other ones, that can
be degenerate. One needs a careful analysis, however, since there is room for subtleties in a
relaxation process that starts to be complex. As an illustration, case ii, that has no real photons,
has in fact the same distribution of photon frequencies as case i, that transits via a real state.
The difference is the initial and final states, *Î ô +Î – *Î and +Î

ôôô +Î, respectively. For
this reason, case ii turns out to be suppressed as a three-photon leapfrog process, as revealed
by the exact calculation. One needs instead to find a case such as iii that suffers no such
interference with another relaxation in the ladder intersecting with a real state. A quantitative
analysis is thus required, and the theory of frequency-resolved photon correlations here again
allows us to easily tackle this problem. The relevant correlation is the one that generalizes
Eq. (1.42) to the N-th order correlation function of N bundles, with each of them—detected at
frequency É!�—being composed of n� photons:
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where “:” indicates normal ordering, a necessary requirement when two (or more) of the
sensors have the same frequency. With this notation, Eq. (4.5a) is the particular case with N = 2

and n
1
= n

2
= 1. For the simplest extension to Ulhaq et al. (2012)’s paradigm, that is, one photon

heralding a two-photon bundle, one therefore deals with
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Figure 4.4(a) shows this quantity computed for the Mollow triplet and, in (b), the mathematical
structure of this photon-bundle correlation spectrum. The “heralding scenario” of one photon,
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(d)

(e)

(b)

(c)

(a)

(f)

(g)

Figure 4.4: Correlations between a single photon and a bundle of two photons. Panel (a) displays the
full correlation spectrum g(2)

1,2,�( É!1, É!2) between a single photon with frequency É!2 and a bundle of
two photons, each with frequency É!1. The antidiagonals of superbunching are shown in Panel (b):
the dashed lines correspond to the transitions É!1 + É!2 = �, whereas the solid lines correspond to the
transitions 2 É!1 + É!2 = �. The latter are shown in the ladder of Panel (c) as cases i–iii, where the dark green
arrows represent the two-photon bundles and the light green arrows the single photon. Panel (d) shows
the ⌧-dynamics along the blue antidiagonal of panel (b), while panel (e) shows the correlation intensities
for all the solid antidiagonals, with the same color code. Panels (f) and (g) show the time-correlations
measured at the frequencies specified by the red and orange filters. Although the correlations in panel (g)
have the �-shape commonly associated to photon heralding, the correlations in panel (f) are much stronger.
Note that while the correlations captured by the orange filters, with the two-photon bundle emitted
at É!1 = *⌦+_2, are bunched, they actually correspond to a local minimum, as seen in panel (e) for the
blue line. The global maximum, instead, lies at a frequency with no particular attribute that one would
not a priori target without the knowledge of the photon-bundle correlation spectrum. Its frequency is one
captured by the red filters. The triplet splitting is ⌦+ = 300�� , the detuning between the laser and the 2LS
is É!� = 200�� and the spectral width of the sensors is � = 5�� , except in panels (f) and (g), where the filter
size is specified for each curve.

of frequency É!
2
, announcing a two-photon bundle, made of photons of frequency É!

1
, follows

from Eq. (4.1) with N = 3 and É!
3
= É!

1
, resulting in correlations for g(2)

1,2 when the condition

2 É!
1
+ É!

2
= � (4.8)
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is met, with, as before, � = 0 or ±⌦
+

. These yield the steeper lines in Fig. 4.4(a), reproduced
as solid lines in (b). They correspond to transitions of the type i–iii in the ladder of panel (c).
The antidiagonals, with the same strength than the three-photon bundles, correspond to
transitions of the type iv in panel (c), namely, a two two-photon bundle cascade, transiting by
an intermediate real state. Two photons from different leapfrogs can have the same frequency,
allowing for their detection as an apparent bundle, although actually emanating from different
bundles, related by a cascade through a real state. In this case, any of the other photon can
be detected as the heralder while the fourth photon is discarded. Although we have shown
previously that correlations that involve a real state are weaker than those that only involve
virtual states, this is when comparing processes of the same order, i.e., with the same number
of photons. Here the two two-photon bundle transition involves a cascade through a real
state but is otherwise composed of (two) second-order processes, while the three-photon
bundle that does not involve a real state, is a third-order process. All this considered, the
exact computation shows that these processes result in correlations of similar strength in the
correlation spectrum, as seen in Fig. 4.4. This could be generalized, although the combinatorial
explosion of different ways in which N photons can be correlated at the same order would
make such a discussion difficult, and I believe that the three-photon case is illustrative of the
overall situation. Therefore, coming back to the three-photon bundle, specified by Eq. (4.8), we
show in Fig. 4.4(d) the photon-bundle correlations g(2)

1,2,�(⌧) along the leapfrog transitions. We
highlight the case +Î – *Î (blue line in panel (b)), the results being similar for other leapfrogs.
The density plot allows to spot where the photon-bundle correlations are the strongest. One
sees, as expected, that correlations are smothered when intersecting a real state, even exhibiting
antibunching instead of superbunching for the cases É!

1
_⌦

+
= 0 (intersecting with the central

peak) and É!
1
_⌦

+
= ±1_2 (leapfrogs). Since, by the nature of the leapfrog correlations, they are

fairly symmetric in ⌧ and maximum at zero, we can identify the optimum as the local maximum
nearby the peaks of g(2)

1,2( É!1
, (� * É!

1
)_2), shown in Fig. 4.4(e). It lies in good approximation

between the two depletions in correlations already described. The correlations in time there
for various filter sizes are shown in panel (f), reproducing in this photon-bundle scenario the
same phenomenology as the photon-photon correlations shown in Fig. 4.3(b). The oscillations
that are observed in time are due to the spectral width of the sensors, which detects photon
from transitions other than the N-photon leapfrog, causing interferences. Such an oscillatory
behaviour can be reduced either by turning to a triplet with a larger splitting, in which the
emission from different transitions are further apart, or by using a smaller filter width. The
photon-bundle correlations display strikingly the same phenomenology as the photon-photon
case of Fig. 4.3. Namely, they are completely symmetric in time, regardless of the size of the
bundle, i.e., the cascade emission of N-photon bundles from opposite sides of the Mollow
triplet does not have a preferential order. The temporal symmetry can be broken by involving a
real transition and detuning the laser from the 2LS. To complete the analogy with Fig. 4.3, we
also show in panel (g) the transition that involves a real state transition for the photon heralding
the bundle. In this case, the correlation profile shown in (g) is obtained, in clear analogy of
Fig. 4.3(a). So one has these two options of heralding a bundle with a photon, would one
scenario be better suited than the other and the Mollow triplet can be turned into a tuneable and
versatile source of N-photon bundles simply by filtering its emission at the adequate spectral
windows.

This physics can be generalized, in principle, to any higher order. Of course, an actual
experiment measuring such correlations would be increasingly challenging. Still, for the sake of
illustration, we now quickly address the case of four-photon bundles (and parenthetically the
general case of N-photon bundles). The leapfrog are then hyperplanes of dimension 3 (N) in an
hyperspace of dimension 4 (N + 1), which we shall not attempt to represent. Instead, we show
the two-bundle correlation spectra, in Fig. 1.15(b). When correlating two bundles of two-photons
each, we recover a landscape fairly similar to that of Fig. 1.15. When correlating a photon with
the rest of the bundle, we turn to the heralding scenario. The number of possibilities is that
given by the integer partition of 3 (N), which is conveniently represented as Young tableaux,
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(a)

(b)

(c)

(d)

Figure 4.5: Correlations involving four photons. (a) Landscape of correlations between two-photon bundles
as given by g(2)

2,2,�( É!1, É!2). (b) Mathematical structure of the correlations with transitions É!1 + É!2 = � (shown
as dotted blue lines), É!1 + 2 É!2 = � and 2 É!1 + É!2 = � (dashed purple), and 2 É!1 + 2 É!2 = � (solid red),
where � = *⌦+, 0,⌦+. (c) Correlations between a three-photon bundle, in which each photon has
frequency É!1, and a single photon with frequency É!2. (d) Mathematical structure of the correlations with
transitions 3 É!1 + É!2 = � (shown in solid green) and the transitions described in (b). The decay rate of the
2LS sets the unit, ⌦+ = 300�� , É!� = 200�� and � = 5�� .

whose number of rows is the order of the correlation, and with each entry providing the
composition of the correlated bundles:

1. for g(4)
1,1,1,1, the standard Glauber correlator g(4),

2. for g(2)
2,2, shown in Fig. 4.5(a),
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3. for g(2)
1,3, shown in Fig. 4.5(b),

4. for g(3)
1,1,2.

The non-partitioned case does not lead to a correlator (it could be understood as normal
luminescence). Maybe the most useful configuration is 5 , with a single photon heralding
a N-photon bundle. The case of one photon heralding a 3-photon bundle lies on any of the
corresponding leapfrogs shown as the steepest lines in Fig. 4.5(b), with equation N É!

1
+ É!

2
= �

(the case N = 3 is the one shown in the figure). While it might be less obvious that other
configurations could also be useful, it would not be surprising on the other hand that the need
could arise with the boom of quantum technologies. It seems that, in such a case, the Mollow
triplet can serve as a universal photon-emitter, able to deliver any requested configuration,
e.g., distributing ten photons in a five channel input with two single photons, two two-photon
bundles and a four-photon bundle:

. (4.9)

Would such a profile be required to feed a quantum gate, it is a small technical matter to
identify which spectral windows would capture this configuration and filter it out from the total
luminescence. Once again, here I do not address specifically the issue of the signal, but only
point to the structure of the photon correlations that reside in the Mollow triplet. I highlight
as well that, in addition to feeding boson sampling devices, the very combinatorial nature of
the emission could allow to test quantum supremacy through photon detection only, without
the need of interposing a complex Galton board of optical beam-splitters. Whatever its actual
use for practical applications, it is clear that the Mollow triplet overflows with possibilities, so
characteristic of strongly-correlated quantum emission.

4.6 conclusions

I have shown that the Mollow triplet is a treasure trove of quantum correlations, at all orders and
not limited to dressed-state transitions. Specifically, I have shown—based on both qualitative
arguments rooted in the structure of the dressed-atom ladder and exact computations made
possible by a recent theory of frequency-resolved N-photon correlations—that the emission
from the Mollow triplet exhibits its richest potential when dealing with leapfrog transitions, i.e.,
processes that occur through virtual photons, endowing them with much stronger correlations.

While the focus of photon correlations from the Mollow triplet has been on correlations
between two photons from the peaks, following the picture of a radiative cascade between
dressed states, our results should encourage the study of correlations from photons away from
the spectral peaks, where the emission from a Mollow triplet at the appropriate frequencies
can be used as a heralded source of N-photon bundles or, taking full advantage of the scheme,
any customisable configuration of photons. At an applied level, including with the use of
cavities to Purcell enhance these transitions and turn the virtual processes into real ones, this
should allow to develop new types of quantum emitters, of interest for instance for multiphoton
quantum spectroscopy following my proposal, which I will discuss in Chapter 7, or to deepen
the tests of nonlocality and quantum interferences between correlated photons, as done by
Peiris, Konthasinghe, and Muller (2017). My result only scratches the surface of the possibilities
that reside in the Mollow triplet, which should be of interest as programmable quantum inputs
for future photonic applications.
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5
E X C I TAT I O N O F A H A R M O N I C O S C I L L AT O R

The most exciting phrase to hear in Science,
the one that heralds new discoveries,
is not ‘Eureka!’ but ‘That’s funny...’

— Isaac Asimov

5.1 introduction

In the previous Chapters, I have introduced various types of quantum light and the importance
of the detection in the description of the emission. Now we will discuss the effect that quantum
light has on optical targets. For this purpose, we will use the formalism of cascaded coupling,
introduced in Section 1.2.1.2. The general problem of excitation with quantum light has obvi-
ously numerous ramifications. To the already large variety of optical targets, one now has to
combine a very much enlarged set of quantum sources. This literally opens a new dimension to
optics. Indeed, classical excitation could arguably be limited to a rather small set of categories:

(a) Incoherent excitation (incoherent pumping, Boltzmann dynamics, thermal baths, equilib-
rium, etc., cf. Fig. 5.1(a))

(b) Coherent excitation (driving with a laser, cf. Fig. 5.1(b))

Quantum light, on the other hand, encompasses not only the above—if only because it is a more
general case that includes classical excitation as a particular case—but also comes with many
more and higher degrees of freedom. This did not lead so far, to the best of my knowledge,
to a comprehensive classification. Tentatively, this could be provided in a first approximation

Incoherent excitation Coherent excitation

(a) (b)

Exciting with classical light

Exciting with quantum light

(c)

(d)

(e)

Quantum Source Classical Target

{ {

Incoherent
SPS

Coherent
SPS

Mollow
PS

Figure 5.1: Upper part: The two main types of clas-
sical excitation. The harmonic oscillator can be
implemented by a single-mode cavity, sketched
here as two distributed Bragg reflectors facing each
other. The single-photon source (SPS) can be imple-
mented by a quantum dot, sketched here as a lit-
tle pyramid, resembling the geometry that Grund-
mann, Stier, and Bimberg (1995) observed when
growing them by self-assembly. (a) Incoherent ex-
citation, typically corresponding to thermal light.
(b) Coherent excitation, typically corresponding to
driving the system with a laser. Lower part: Up-
grading the classical sources of the upper panel
with SPS. (c) is the counterpart of (a), to be re-
ferred to as the “incoherent SPS”. The coherent
case yields two very different types of quantum
light at low and high pumping: (d) the coherent
SPS and (e) the Mollow PS which can emit more
than one photon at a time. Other types of quantum
sources and other types of targets constitute the
topic of the following texts in the series.
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by g(2)� (antibunching, uncorrelated, bunching, superbunching). Since squeezed states have the
correlations of coherent states, however, and they are precisely the type of input that motivated
a new formalism, it is clear that this is still far from appropriate. I will approach this general
problem by considering:

• the same optical target (here an harmonic oscillator, in the next chapter a two-level
system),

• the same type of quantum source (here and in the next chapter, a single-photon source, in
chapter 8, an N-photon emitter),

• both coherent and incoherent regimes,
• both low and high pumping regimes.

The single-photon source (SPS) is a good starting point because it is the paradigm of quantum
light and is the most common light of this type in the laboratory. Exciting the harmonic oscillator
makes the problem both simple and fundamental, so this is also a good starting point. While we
have considerably restrained the possibilities, there still remains much to be explored and the
following will only address the main results. The two types of excitations aforementioned (a–b)
yield quite different types of SPS, that are introduced in the beginning of their respective
Sections, and are summarized in table 5.1 . Note that in the table, the bottom row also includes
the middle one (which is the limit of small pumping). They are however so distinct qualitatively
that it is helpful to think of them as separate sources. As we will show, the middle row (small
coherent pumping) leads to the best antibunching in the target.

5.2 pure quantum state in the dissipative regime

We first consider the simplest possible implementation: the excitation of a passive cavity,
modelled as a harmonic oscillator, by the output of a weakly driven 2LS evolving according
to Eqs. (1.44–1.45). There are only two parameters ruling this configuration: the ratio between
the decay rates of the target and the source, �a_�� , and the intensity of the driving ⌦� (also
normalized to �� to keep all the variables dimensionless). Figure 5.2 shows the states of the
cavity field that can be reached, through (a) the photon statistics (color coded) and population
(isolines) as well as (b) the purity of the states measured through Tr[⇢2] (zero corresponding to
maximally mixed states and one to pure states). The results of the calculation show that a large
family of steady-state pure quantum states, i.e., with a wavefunction

 Î =
ÿ
…

n=0
↵n nÎ , (5.1)

(here ↵n À C such that
≥ÿ

n=0 ↵n
2
= 1) can be obtained despite the driven-open nature of the

system. Many of these states are non-classical, meaning that they sustain quantum superposi-
tions and sub-Poissonian fluctuations, depending on the interplay of quantum pumping and
decay. The cut along the line I–II shows the transition from a regime where the target behaves

Source Pumping Population n� g(2)� (⌧) Lineshape Linewidth

Incoh. SPS P� Given in Eq. (2.7) Given in Eq. (2.7) Lorentzian ��
Coh. SPS small ⌦� 4⌦

2

�_�
2

� Given in Eq. (1.48) t2-distribution ��
Coh. SPS large ⌦� Given in Eq. (1.46) Given in Eq. (1.50) Triplet

<

�� (central)
3��_2 (satellites)

Table 5.1: Characteristics of a SPS driven incoherently or coherently. In the latter case, for clarity, we also
consider separately the low-driving intensity (middle column) from the general case (right column) that
covers all pumpings, to highlight the strong qualitative features of the Mollow regime.
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5.2 pure quantum state in the dissipative regime 87

Figure 5.2: Pure quantum states in the steady state. The red area of (b) shows areas where the system
is in a pure state. The density plot of g(2)a (0) in (a) shows that this corresponds to states with g(2)a f 1. It
is possible to have antibunched mixed states. Four isolines of constant populations are shown on both
panels. (c) Antibunching and ratio of the effective linewidths of the target and source along the line I–II,
showing a transfer of properties from the source to its target. (d) Antibunching and diagonal elements of
the density matrix along the line III–IV. (e) Density matrices for three pumping powers. At ⌦3, the system
is in state 1Î with more than 60% probability, although not in a pure state anymore.

according to its own classical nature (I) to one where it inherits instead the properties of the
quantum source (II). In the former case, where the repetition rate of the emitter is larger than
the decay rate of the target, the many excitations that can be accumulated give predominance
to the target, which grows a coherent state (g(2)a = 1) and exhibits the same PL spectrum as it
would than if excited classically. In the latter case, on the contrary, where the input is sparse,
the target simply stores the excitation and reproduces it faithfully. This is the counterpart to
the effect described in Chapter 3, in which a 2LS driven in the Heitler regime is the basis to
generate single photons with a sub-natural linewidth.

Some interesting scenarios lie in the intermediate region, where the state fed into the cavity
mixes characteristics of both its input and its recipient. These states, however, require the
concept of mixity that involves statistical averages and the upgrade of the wavefunction (a state
vector, given in Eq. (5.1)) to a density matrix

⇢ =
ÿ
…

n,m=0
⇢nm nÎ Ím . (5.2)

Thus, one can create quantum states of the light field with no need of quantum engineering,
merely by exciting the system with resonance fluorescence. This realizes what one can refer to
as “dissipative Fock state N ,” defined as a steady state in an open environment qualitatively
close to ⇢nm = �Nn�Nm, with �kl a Kronecker delta, as shown in Fig. 5.2(e). Together with the
Fock states, we thus can find such steady states with population larger than one and exhibiting
antibunching, g(2)a < 1. Also, whenever g(2)a < 1_2, the population is less than unity, thus still
satisfying on average this flawed criterion for single-particle excitation, which we have reviewed
in Chapter 3. Another cut, III–IV, on the isoline of average population fixed to unity, shows how
antibunching increases as the amplitude of state 1Î increases at the expense of vacuum and
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state 3Î, keeping the amplitude of state 2Î the same, which in practice allows to have quantum
control in the steady state. Sánchez Muñoz et al. (2014a) have observed that considering sources
with an even higher quantum character, it is possible to reach pure steady-state wavefunctions
for the driven harmonic oscillator such that ⇢

22
> max(⇢

11
_2, ⇢

33
), that is, with less quantum

fluctuations for two particles in the steady-state than are normally allowed by spontaneous
emission, thereby realizing an effective dissipative Fock state of two particles.

5.3 charting the hilbert space

A natural question that is raised when exciting with quantum light is whether this kind of
driving increases the space of quantum states accessible to the system being excited. For this,
however, we need a road map to characterize all the states at a glance. The Hilbert space is a
big place, and Human’s capacity of abstraction gives a deceivingly simple picture of it. The
canonical basis of Fock states nÎ with n À N provides a comprehensive and concise map of
the states in the harmonic oscillator’s Hilbert space H

ÿ
, writing them as the wavefunction

in Eq. (5.1). While this expression is precise, it also fails to provide a qualitative map of the
possible states. Beyond Fock states, one needs to keep track of the coherent states from classical
physics, as shown in Eq. (1.31), for which ↵n = ↵n exp(*↵2)_

˘

n! for some complex number ↵
that defines the amplitude and phase of a classical field. The next family of important states can
only be described through a density matrix, as in Eq. (5.2). For instance, now we can introduce
the thermal states, for which ⇢nm = (1* ✓)✓n�nm for some reduced temperature ✓ À [0, 1]. Laussy
et al. (2006) showed that these two families can be unified into a larger class of “cothermal”
states that interpolate between the two and describe, e.g., single-mode Bose condensates not
too far from threshold. From there on, one essentially deals with quantum states of light with
popular examples such as Lvovsky (2015)’s squeezed states, Haroche and Raimond (2006)’s cat
(and kitten) states, and other less popular states such as Stoler, Saleh, and Teich (1985)’s binomial
states or Nieto (1997)’s displaced Fock states. While this zoology of states is familiar to every
quantum physicist, it fails to provide the sought mapping of the Hilbert space. In particular, it
is restricted to known (and popular) cases and leaves most of Eqs. (5.1–5.2) uncharted.

For the following discussion, I propose to chart the Hilbert space based on important
observables of the quantum state, namely, the Nth order correlation function, introduced in
Eq. (1.32). Since we are interested in the quantum state of the harmonic oscillator, and not in
the way in which the system has reached such a state, the normalization makes the first-order
correlation function, g(2)a (1), to be trivially unity. I therefore use instead the normalization itself,
which is an important observable, the population of the state (average number of excitations), na,
for which we use the notation introduced in Eq. (1.25). Note that to measure (and compute) the
correlations in Eq. (1.32) we only need the diagonal elements p(m) = ↵m2, so in this discussion
there is no distinction between pure (given by a wavefunction, as in Eq. (5.1)) and mixed
(described only through a density matrix, as in Eq. (5.2)) states. In terms of these diagonal
elements, the n-th order correlator (defined in Eq. (1.32), and at zero delay) reads:

g(n)a =

≥ÿ

m=0 m!p(m)_(m* n)!
�

≥ÿ

m=0 mp(m)
�n . (5.3)

A convenient mapping of the Hilbert space is to chart it with the na and g(2)a “rulers”, that is,
tag the possible quantum states through their joint statistical properties and population. The
value of g(2)a allows to tell apart classical from quantum states depending on whether g(2)a is
larger (bunching) or smaller (antibunching) than unity. This is meant in the sense of whether a
classical, possibly stochastic, description is possible, or whether some “quantum” features such
as violation of Cauchy–Schwarz inequalities or negative probabilities in the phase space are
manifest. The population gives another meaning to quantumness, in the sense of few-particle
effects vs macroscopic occupation. It is therefore particularly interesting to contrast these two
attributes and consider, e.g., highly occupied genuinely quantum states. There is a physical
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Figure 5.3: Charting the Hilbert space. The
shaded area shows the region where a
physical quantum state exists with the
corresponding joint population and anti-
bunching. It is delimited by the bound-
ary Eq. (5.4) of “Fock duos”, defined by
Eq. (5.5). Higher order correlators (thin
dashed) set other boundaries, also delim-
ited by Fock duos.

limit to such states and for populations na > 1, some values of antibunching are out of reach.
This is expected on physical grounds from familiar features of the Fock states popularly known
as being the “most quantum” states, with their g(2)a tending to one as the number of excitations
increases. Also, macroscopic quantum states, such as a BEC, are essentially coherent states
in most formulations. Here, I make this notion precise by providing the complete picture,
in Fig. 5.3, along with the closed-form expression for the boundary that separates accessible
combinations from impossible ones (the proof of this is detailed in Appendix B.1):

g(2)a =
‚na„(2na * ‚na„* 1)

n2a
. (5.4)

This boundary is provided by superpositions of contiguous Fock states, i.e., of the type:
˘

p(n) nÎ+
˘

1* p(n)ei✓ n+ 1Î , (5.5)

for n À N, p(n) À [0, 1] and ✓ À [0, 2⇡[ an (irrelevant) phase. As already commented, this
includes also mixed states of the type p(n) nÎ Ín+ (1* p(n)) n+ 1Î Ín+ 1 and all others with
the same diagonal but different off-diagonal elements. I will not make this distinction anymore
in the following. I call the states in Eq. (5.5), “Fock duos”. They set the continuous lower limit of
the space of available quantum states in our charted Hilbert space. Their antibunching, Eq. (5.4),
is a generalization to non-integer na of the formula g(2)a = 1 * 1_na for the Fock state Û

Û

naÎ to
which it reduces for na À N. In particular, it shows that the popular “single-particle criterion”
that asserts that g(2)a < 0.5 ensures a one particle state—which is rather widely used in the
community, cf. Michler et al. (2000), Dong et al. (2007), Verma et al. (2011), di Martino et al.
(2012), and Leifgen et al. (2014)— is wrong, as demonstrated, e.g., for the case na = 1.5 for
which g(2)a = 4_9 ˘ 0.44. The generalization to higher orders is straightforward. Namely, the
nth-order correlation frontier for real na is given by:

g(n)a =
‚na„!

(‚na„* n)!nna

4

1 +
n(na * ‚na„)
‚na„+ 1* n

5

, (5.6)

which generalizes the Fock state formula g(n)a = (1_nna)m!_(m* na)! valid for integer na where
it agrees with Eq. (5.6). Interestingly, the lower limit is also set, for all n, by Fock duos (not
“n-plets”). One can also consider other charts of the Hilbert space, such as (g(2)a , g(3)a ), this time
contrasting two- and three-particle correlations together, but with Zubizarreta Casalengua et al.
(2017) we have demonstrated that this space is not bounded, as shown in Fig. 5.4. Since the
excitation of an harmonic oscillator by the SPS leads to strong correlations between various g(n)a ,
we will focus on the (na, g

(2)

a ) space.
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Figure 5.4: The complete distribution
for H3—the Hilbert space for up to three
particles—lives in a 3D space, shown here
through its upper boundary along with
the three projections on 2D spaces. The
function Pg(n0, g(2), g(3)) gives the density
of probability of the states with a given
population, second- and third-order cor-
relation functions. The figure is an adap-
tion of one of my papers with Zubizarreta
Casalengua et al. (2017).

5.4 exciting with an incoherent sps

Now that we can conveniently characterize the states of the harmonic oscillator that one can
excite, we come back to the dynamical problem of the quantum driving of an harmonic oscillator
and how close can one get to the limit set by Eq. (5.4). We first consider the case of excitation
with an incoherent SPS, i.e., where the two-level system (2LS) that acts as the source, is itself
driven incoherently, as sketched in Fig. 5.1(c). Namely, there is a constant rate P� at which the
2LS is put in its excited state, and is otherwise left to decay. The system is thus described by
the master equation (1.28), with c

1
= � the 2LS and c

2
= a the harmonic oscillator operators,

respectively. The 2LS pumping is described by a Lindblad term (P�_2)L�†⇢. Thanks to the
absence of feedback, the dynamics is ruled by closed equations which allows us to obtain
exact solutions for the observables of interest. Namely, I find that the cavity population na and
statistics g(2)a of the target are given by (cf. the upper row of Table 5.1 for the source):

na =
P���

(�� + P�)(�� + P� + �a)
, and g(2)a =

2(�� + P�)
�� + P� + 3�a

. (5.7)

Only two parameters are required to describe fully the system:

Figure 5.5: Trajectories in the Hilbert space charted by na and g(2)a for the states excited by an incoherent SPS,
for various values of �a_�� . The implicit parameter is the pumping. Highlighted are the cases �a_�� = 10

*1

(blue), 1 (green), 10 (yellow) and 10
2 (red). The dark green thick envelope shows the closest one can get in

this configuration to the ideal antibunching, which is zero. All the states, and only these states, above this
line and below g(2)a = 2, are accessible with an incoherent SPS.
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• the ratio between the decay rate of the cavity and the leakage rate of the 2LS, �a_�� , and

• the intensity (or pumping rate) of the 2LS, P� , also normalized to �� to keep the parameters
dimensionless.

Eliminating P� from Eqs. (5.7) gives the equation for the trajectory in the (na, g
(2)

a ) space as
function of the parameter �a_�� :

na =
1

6

(2* g(2)a )(3g(2)a (�a_��)* (2* g(2)a ))

g(2)a (1 + g(2)a )(�a_��)
. (5.8)

These trajectories in the Hilbert space are plotted in Fig. 5.5. The curves start from the point:
0

na = 0, g(2)a =
2

1 + 3�a_��

1

, (5.9)

at vanishing pumping, reach a turning point with coordinates:
H

na =
2 + (�a_��)* 2

˘

1 + (�a_��)
(�a_��)2

, g(2)a =
2

3

˘

1 + �a_�� * 2

I

, (5.10)

when the rate of driving takes the value P� =

˘

��(�a + ��) and converge at (na = 0, g(2)a = 2) at
large pumpings, where the source gets quenched. For each value of �a_�� , there are two values
of pumping that result in the same population but two values of g(2)a . The curve of Eq. (5.8)
is fairly constant till the turning point and, from Eq. (5.9), leads to a genuine quantum state
(which, e.g., feature antibunching) as long as �a_�� > 1_3, which means that, with a SPS one
can imprint antibunching in a system that has a substantially longer lifetime. The optimum
antibunching/population for a given �a_�� is achieved slightly earlier than the turning point,
namely, when P� = �� . The envelope of all the curves in Fig. 5.5 is the closest one can get to the
Fock-duos limit, and is given by g(2)a = 2na_(3* 2na). This is the thick dark green line in Fig. 5.5.

The above solution gives an already substantial description of the response of an harmonic
oscillator to an incoherent SPS. We can complement it with alternative descriptions that approach
the solution from different viewpoints and manifest the advantage of cascaded coupling over
other types of excitation. A natural comparison is with the standard Hamiltonian coupling,
which is the usual way to couple different systems. For instance, it is convenient to lay out the
observables as function of the parameters in 2D density plots, as shown in Fig. 5.6. Panels (a–c)
show the photon statistics (color code) and the population of the cavity (isolines) using the
(a) cascaded coupling and (b, c) the Hamiltonian coupling. For the later case, we consider
two configurations: (b) when the 2LS has the same decay term as when acting as a source
in the cascaded scheme, and (c) when the 2LS has no decay term, so that all its excitation
is directed towards the cavity, corresponding to the ideal excitation of the cascaded scheme.
Interestingly, (a) and (b) types of excitation present a qualitatively similar photon statistics
layout, but the topography of the resulting population yields largely differing states, as evident
once reported in the (na, g

(2)

a ) space, panel (d). The color circles along the isolines mark the
points with strongest antibunching (i.e., smallest g(2)a ) for a given population. It is seen that for
a given signal, the antibunching is significantly larger with the cascaded coupling. In both cases
the antibunching is marred before the cavity population reaches one photon on average. At
larger populations, the photon statistics of the cavity become bunched, i.e., g(2)a = 2. On can
contemplate other configurations but they result in worse results: detuning the cavity from
the 2LS leaves the photon statistics unchanged, but reduces the population of the cavity, so
the antibunching is lost at even smaller cavity populations. Dephasing the 2LS increases the
broadening of the emission peak, but also drives the cavity towards a coherent state faster.
Hamiltonian coupling with no decay of the 2LS, case (c), differs qualitatively from the former
cases and provides a substantially better antibunching than Hamiltonian coupling with decay
of the 2LS. It even becomes better than the cascaded coupling when na ¿ 2_3. This situation can
be much improved with the coherent SPS.
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5.5 exciting with a coherent sps

We now consider excitation by a coherent SPS, i.e., when the 2LS that acts as the source is
driven coherently by an external laser, as sketched in Fig. 5.1 (d). This driving is described by
the Hamiltonian:

H� = !��†� +⌦�
˘

✏
1
(�†e*i!Lt + �ei!Lt) , (5.11)

where !� is the energy of the 2LS, and !
L

and ⌦� =
˘

��E are the frequency and intensity
of the driving laser (which drives a 2LS of decay rate �� with a coherent field of intensity E),
respectively. The coefficient

˘

✏
1

is put here so that the cavity is driven only by the emission
of the 2LS and not by the external laser. The system is otherwise still described by the master
equations (1.27) and (1.30), with c

1
= � the 2LS (source) and c

2
= a the harmonic oscillator

(target), and reducing the coupling strength by a factor
˘

1* ✏
1
, i.e., the coupling is given by

˘

(1* ✏
1
)�a�� . Here again, one can obtain the cavity observables in closed-form, although it
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Figure 5.6: Populations (isolines) and g(2)a (color) of the target excited by an incoherent SPS, through (a)
the cascaded coupling or (b,c) the Hamiltonian coupling with (b) and without (c) decay of the 2LS. (d)
Minimum g(2)a that can be reached at a given population for all these cases. The color circles mark the
parameters P�_�� and �a_�� at which the population isoline meets the minimum g(2)a .
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takes slightly more cumbersome expressions. At resonance (out-of resonance cases can also be
obtained but get even more bulky):

na =
16(1* ✏

1
)�û01⌦

2

0

⇠

�2û11
�û12 + 8�û10⌦

2

0

⇡

�û10�û11(�
2

û01
+ 8⌦

2

0
)(�û11�û12 + 16⌦

2

0
)

, (5.12a)

g(2)a =

$

�û11(�
2

û01
+ 8⌦

2

0
)(�û11�û12 + 16⌦

2

0
)[�û11�

2

û21
�2û31�û12�û32 + 8�û10�û31(17�

3

û10
+ 29�2û10�û01 + 18�û10�

2

û01
+

+ 4�3û01)⌦
2

0
+ 192�2û10�û21⌦

4

0
]

%

ù

⌧

�û21�û31(�û11�û21 + 8⌦
2

0
)(�û31�û32 + 16⌦

2

0
)(�2û11�û12 + 8�û10⌦

2

0
)
2

�*1

, (5.12b)

where I have introduced the notation �õij = i�a + j�� (e.g., �û31 = 3�a + ��), and we have set
⌦
0
=

˘

✏
1
⌦. Eliminating ⌦2

� from Eqs. (5.12) yields, for a given �a_�� , solutions of the type
g(2)a = (P [3] ±

˘

P [6])_(P [2]n2a) where P [n] is an n-th order polynomial of the variable na. The ±

terms provide the two branches of the curve as seen in Fig. 5.7(a). The lower branch corresponds
to low pumping, where the photoluminescence (PL) of the source is still a single line as shown
in the bottom inset, while the upper branch corresponds to high pumping where the PL has
split into a Mollow triplet, shown in the upper inset. Each curve starts from the point:

0

na = 0, g(2)a =
1

(1 + �a_��)2

1

, (5.13)

showing that coherent SPS provide a much stronger antibunching than their incoherent coun-
terpart, Eq. (5.9), already at vanishing pumping. At high pumping, in contrast to the incoherent
case that vanishes the population of its target, the coherent SPS quenches it to a nonzero value
and featuring bunching:

0

na =
1* ✏

1

1 + �a_��
, g(2)a = 3

1 + �a_��
1 + 3�a_��

1

. (5.14)

Eliminating �a_�� here leads to the curve g(2)a = 3(1* ✏
1
)_[3(1* ✏

1
)* 2na], which for ✏

1
= 1_2

simplifies to g(2)a = 3_(3 * 4na) as shown in thick black in Fig. 5.7(a). The expression for the
lower envelope of maximum antibunching, in blue, is too complicated to be derived fully in
closed-form but we can find simple asymptotic expressions by series expansion of Eqs. (5.12),
namely, g(2)a ˘ 5n2a when na ~ 1 and g(2)a ˘ 1 * 1_(3(na + 5)) when na ∏ 1. The states thus
get close to the ideal Fock limit for large populations, approaching unity as 1_(3na) rather
than 1_na. There is no limit in the population that can be excited in the target by the coherent
SPS, in stark contrast to the incoherent SPS that is bounded by unity. Although the accessible
states in the (na, g

(2)

a ) space remain quite some distance away from the ideal limit, the coherent
SPS provides a much better antibunching than its incoherent counterpart, as can be seen by
comparing Figs. 5.5 and 5.7. Namely, it is still antibunched when population is unity (with
a maximum antibunching slightly over 1/2) and we have already commented how it allows
for arbitrary large populations, that still feature antibunching. This is achieved by exciting at
resonance targets of very long lifetimes as compared to the source.

This describes the resonant situation. Since the coherent SPS has a rich spectral structure, it
opens new configurations of excitation in the Mollow triplet regime beyond the central peak,
such as exciting with a satellite peak (as shown in Fig. 5.7(c)) or with the leapfrog window
(Fig. 5.7(b)). In these cases we show the results in log-log plots as only small populations are
within reach (unlike the case of resonance) and, in the case of leapfrog excitation, also a huge
bunching can be imparted to the target. The envelope of optimum antibunching as obtained
in resonance is reported in these panels (also in green) for comparison, showing that these
alternative schemes do not enhance antibunching. The excitation with leapfrog processes allows
to access new regions of the Hilbert space related to superbunching, so it is a configuration
that presents its own interest. This is achieved at the price of small populations. Exciting with a
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(a) (b)

(c) (d)

Exciting at resonance Exciting with leapfrog

Exciting with a satellite Scanning in frequency

Figure 5.7: Same as Fig. 5.5 but for the excitation from a coherent SPS. In (a,c) the implicit parameter is the
pumping to the two-level system and the green line shows the closest one can get from the Fock-duos limit
from the case at resonance. In (d) the implicit parameter is the detuning between the source and its target.
(a) Exciting at resonance. The optimum antibunching is the envelope in this configuration of the family
of curves varying with �a_�� . Highlighted are the cases �a_�� = 10

*2 (blue), 10*1 (green), 1 (chartreuse),
10 (yellow) and 10

2 (red). (b-d) Exciting in other configurations, namely (b) with the leapfrog processes,
(c) with the satellite and (d) as a function of frequency. Highlighted are the cases �a_�� = 10

*1 (blue), 0.5
(chartreuse), 1 (green), 5 (orange) and 10 (red). The dashed-dotted line in panel (b) and the dashed line in
panel (c) show the limit of large intensities and are merely a visual aid rather than a physical boundary.
They are also shown in panel (d), along with the black solid line for the envelope of the curves at !a = !� .

satellite peak also conquers new territories in the (na, g
(2)

a ) space not accessible through either
the central peak or leapfrog emission in a small region (na ˘ 0.6, g(2)a ø 2). Panel (d) shows the
trajectories when varying the frequency of emission, where the cases just discussed—resonance,
leapfrog and satellites—appear as boundaries of the complete picture, thus showing that these
configurations already give access to all the accessible states.

We can also compare in the parameter space the coherent SPS with its Hamiltonian counter-
part, as we did for the incoherent SPS. This is shown in Fig. 5.8, that is also usefully compared
with Fig. 5.6 (incoherent SPS excitation). For the coherent SPS as well, both cascaded and
Hamiltonian coupling are qualitatively similar in their statistical layout when the 2LS has a
decay term, but also differ notably from the topography of the associated intensities. This is,
again, clear on the (na, g

(2)

a ) space, with the maximum antibunching that can be obtained for a
given cavity population with cascaded coupling (green line) and Hamiltonian coupling (red
line). The Hamiltonian coupling with no decay of the 2LS also results in qualitative differences
and an enhanced antibunching. However, in this case, the Hamiltonian coupling never comes
to surpass the cascaded scheme. Instead, in all the range of population, the antibunching
obtained through the cascaded coupling is larger than the one obtained with any type of normal
(Hamiltonian) coupling, for a given population. When the cavity is detuned from the 2LS,
the antibunching is lost before the cavity’s population reaches one photon. Also, when the
cavity is in resonance with the leapfrog process emission, the photon statistics of the cavity is
superbunched but its population remains well below unity. Including a dephasing rate to the
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dynamics of the 2LS increases the broadening of each emission line in the triplet, and even
a small dephasing rate spoils the antibunching. Thus, the best antibunching with a coherent
SPS is obtained exciting the cavity at low pumping and in resonance with the 2LS, using the
cascaded coupling.

One of the departing features of the coherent SPS excitation, is that it allows to populate its
target with more than one excitation on average, therefore triggering Bose stimulation effects.
There is a phase locking (of 0, as determined by the Hamiltonian) of the incident photons
from the quantum source that accumulate while still exhibiting some features of Fock states, in
particular being antibunched. A complete picture of the resulting quantum states, beyond the
diagonal elements only, is given Fig. 5.9 for the states marked with black circles in Fig. 5.6(f),
both through the Wigner representation, Fig. 5.9(a-c), and through their matrix representation,
Fig. 5.9(d-f). The Wigner representation exhibits negative values at the origin, a mark of a
genuine quantum state with no classical counterpart, for the states with na = 1 and na = 1.5.
It is, however, positive everywhere for na = 3, although the state is still antibunched. Also,
one can see that the phase uncertainty decreases as the population increases, in agreement
with the “classical limit”. Moreover, the matrix elements in these cases also satisfy the relation
⇢
22

> max(⇢
11
_2, ⇢

33
), which means that the fluctuations are smaller than could be expected

from rate equation arguments, since two excitations are twice as much likely to decay than one
excitation, making the probability to find one excitation only in principle at least twice as large
than double occupation.

Cascaded
Hamiltonian with Decay

Fock duos
Hamiltonian

Minumum

0

1

2

3
Cascaded Coupling Hamiltonian Coupling with Decay Hamiltonian Coupling

(a) (b) (c)

(d)

Figure 5.8: Same as Fig. 5.6 but for a coherent SPS, with (a) the cascaded coupling and (b,c) the Hamiltonian
coupling with (b) and without (c) decay of the 2LS. (d) Minimum g(2)a that can be reached at a given
population for all these cases. The color circles mark the parameters ⌦�_�� and �a_�� at which the
population isoline meets the minimum g(2)a .
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We conclude this Section on driving an harmonic oscillator with the coherent SPS by consid-
ering states in the (g(2)a , g(3)a ) space. This is shown in Fig. 5.10 for the most notable configurations
of exciting with the central peak of the Mollow triplet or the leapfrog region between the central
peak and a satellite. All points are physical on this map, including cases with g(2)a ~ 1 and
g(3)a ∏ 1 (and vice-versa), although the accessible regions are strongly confined along curves that
we can fit in monomial form, leading in good approximation to g(3)a ˘ 0.2[g(2)a ]

2 at low pumping
(in the antibunching corner) and g(3)a ˘ 4.5g(2)a at large pumpings (in the superbunching corner).
We indicate positions of popular quantum states such as Fock states, coherent states, thermal
states and their combinations. Driving with a SPS spans over great distances in this space,
especially when exciting with leapfrog processes, as seen in panel (a) of the figure. This shows,
again, how the central peak remains confined essentially to the antibunched corner of the map
(excursions to bunching cases are up to g(2)a = 3). Panel (b) is a zoom around small values in
linear scale. The leapfrog processes, on the contrary, allow one to reach large joint values of g(2)a
and g(3)a . Interestingly, while the points accessible in the (na, g

(2)

a ) space extend over 2D areas, in
the (g(2)a , g(3)a ) space they are confined to 1D curves, showing how these correlators are strongly
inter-dependent, and thus making the (na, g

(2)

a ) representation more prominent.

5.6 variations in the type of coupling

The comparison between the top rows of Figs. 5.6 and 5.8 shows that the coherent SPS is a
much better quantum drive to generate bright antibunching than the incoherent one, even in the
region where na < 1. The coherent SPS exciting the cavity still remains some distance away from
the Fock duos boundary, but it gets significantly closer than with the Hamiltonian coupling. We
complete our juxtaposition between the two types of coupling, cascaded and Hamiltonian, by
comparing with other variations in the way the source couples to its target.

First, we consider another source of decay for the source in the cascaded coupling scheme,
i.e., with an extra term (�<�_2)L�⇢ in the master equation, leaving the coupling strength constant
and equal to

˘

�a��_2. This describes the situation where not all the light that is lost from the

(a)

(e)(d) (f)

(b) (c)

Figure 5.9: Wigner function (a–c) and density matrix (d–f) for the states marked by black circles along the
green line in Fig. 5.8(d). These states have populations na = 1, 1.5 and 3 from top to bottom and all feature
antibunching.
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Coherent
Leapfrog

Fock duos

(b)

Thermal
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Figure 5.10: States accessible in the (g(2)a , g(3)a ) space by coherent SPS excitation, at resonance with the
central peak (orange line) or with the leapfrog emission (red line). The dashed blue line corresponds to
the “Fock duos”, Eq. (B.1). The same result is shown in both (a) log-log and (b) linear scales.

source is redirected to the target. Figure 5.11(a-b) shows how this other source of decay spoils
the antibunching and drives the cavity faster toward a coherent state (for the coherent SPS) or
to a thermal state (for the incoherent SPS). At �<� = 10�� , the antibunching is worse than that
obtained using the Hamiltonian coupling (without any additional dissipative channel). This
shows that it is better to minimize losses from the quantum emitter, but that unless these are
drastic, the impact is moderately detrimental. Note that the cascaded coupling strength can only
be smaller or at most equal to

˘

�
1
�
2
, unlike the statements by Flayac and Savona (2014), who

refer to “arbitrary coupling strengths”. This leads, otherwise, to unphysical states for the target.
Second, in the Hamiltonian coupling, we increase the coupling strength and bring the system
into the strong-coupling regime. This is one considerable degree of freedom of the Hamiltonian
coupling that is lost when considering some external excitation, since photons that drive the
system from outside can couple to it in the first place because it is dissipative. In fact, the more
efficient is the source–target coupling, the more dissipative the target has to be. But a dissipative
target cannot sustain quantum effects for long, as the states do indeed decay. Therefore there
is a compromise for the target’s lifetime to allow simultaneously an efficient driving from
the source while still allowing to store long enough the imprinted quantum attributes. In the
Hamiltonian coupling, however, coupling and decay are independent and one can consider
a pure Hamiltonian picture with no decay whatsoever. We will see later in Chapter 8 how
one can remedy to this vicious circle to some extent by considering other types of quantum
sources. For now, we show that, surprisingly, the cascaded coupling indeed provides a better
quantum driving than the Hamiltonian coupling brought in the strong-coupling regime. This
is because in the latter case, the reversible process from the “target” back to the “source” acts
like an effective decay. This is shown in Fig. 5.11(c,d), where we compare again the maximum
antibunching obtained in the configuration of Sec. 5.5 (solid green lines) with a magnified
Hamiltonian coupling Ég = N

˘

�a��_2 for various N . For both the coherent and incoherent
excitation cases, the antibunching is improved by raising the coupling strength. However, this
improvement is still not large enough to overcome the cascaded coupling. As seen in the figure,
even for large Hamiltonian coupling strengths, the antibunching obtained with the cascaded
coupling (solid green line) is always significantly better. Increasing even further the value of N
does not improve the antibunching, but makes it occur at larger (⌦� , �a) values. At this limiting
case, the antibunching obtained for the Hamiltonian coupling with the decay of the source
coincides with the antibunching for the Hamiltonian without the decay of the source. Therefore,
Fig. 5.11(c) shows the optimum antibunching that can be obtained using both the cascaded and
Hamiltonian couplings.

Increasing the coupling has a much stronger effect in the case of incoherent excitation,
as shown in Fig. 5.11(d). Even a small variation of the coupling strength, N = 1.5, changes
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Increasing the dissipation Increasing the coupling strength
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(d)

Max. Antibunching

Max. Antibunching

Figure 5.11: Variations in the model. (a, b) Adding a dissipative channel to the source in the cascaded
coupling spoils the antibunching. (c, d) Increasing the coupling strength g in the Hamiltonian coupling
(with decay in the source) enhances the antibunching until it reaches the one obtained for the Hamiltonian
coupling without decay of the source (when Ég ˘ 10g). However, the enhancement is never enough to top
the antibunching obtained using the coherently driven 2LS and the cascaded coupling.

significantly the curvature of the antibunching curve. For instance, del Valle and Laussy (2011)
showed that increasing the value of N makes the system enter the “one-atom laser” regime and
the state in the cavity becomes coherent. As for the coherent excitation, the best antibunching
saturates with increasing coupling (converging at roughly Ég = 10g), with larger values of the
coupling strength merely occurring at larger (P� , �a) values. Nevertheless, although raising the
coupling strength improves the antibunching, and at large Ég the g(2)a approaches 1 when the
cavity population increases, the best antibunching is still obtained with the cascaded coupling
in the coherent excitation regime (green line in Fig. 5.11(d)). Overall, it is therefore established
that optimum antibunching is obtained in the cascaded architecture. This could have important
consequences in the design of future quantum-optical devices.

5.7 conclusions

My analysis of the excitation by a SPS of a quantum harmonic oscillator can be summarized
by Fig. 5.12. Here I show again the charting of the Hilbert space of the quantum harmonic
oscillator that I have introduced, along with the various areas that can be accessed with a SPS.
First, the region I of physical states, shown in light blue, delimited by Fock duos (Eq. (5.5))
according to Eq. (5.4). No state exists that can provide the corresponding joint population and
antibunching in the white region. In contrast to popular belief, states do exist in the region
above this boundary that satisfy g(2)a < 1_2 and na > 1 which shows that on mathematical
grounds, the criterion g(2)a < 1_2 cannot be used to exclude states with more than one particle.
In this region of physical states, the green area can be accessed in the steady state by exciting a
cavity with a SPS, provided an adequate �a_�� ratio and pumping. The largest span is realized
by a coherent SPS (i.e., a 2LS itself driven by a laser) at resonance with its target. This gives
access to the light green region II. Not all states are accessible in this configuration, in particular
the limit of Fock duos remains some distance away from the driven dissipative case. States of
arbitrary populations can be reached with the coherent SPS (by using targets with long enough
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II

I

IV

III

Figure 5.12: Summary of the results of this chapter: the Hilbert space of an harmonic oscillator charted
by the na (population) and g(2)a (second-order correlation function) is accessible for any point in the blue
region I (the white region is forbidden). Of this region, the wider span is achieved by exciting with a
coherent SPS, covering the green region. This region breaks down into II, the region achieved at resonance
between the source and the target, III, that achieved with the excitation from a satellite of the Mollow
triplet and IV that achieved with the leapfrog emission. The incoherent SPS covers a smaller region,
delimited by the red dotted curve. The Hamiltonian coupling, between the two dotted-dash yellow curves,
also covers a large span of the Hilbert space and is neither included nor fully excluded of the SPS area. In
particular, the excitation by a SPS allows to provide a stronger antibunching for any given population as
compared to a Hamiltonian coupling, although it still remains some distance away from the ideal limit.

lifetimes) that still retain antibunching. One can also realize states of arbitrary high bunching,
by using leapfrog emission of the SPS in the Mollow triplet regime. This is the region IV shown
in dark green in Fig. 5.12. Exciting with the satellite peaks covers the region III that gives
access to a small patch not within reach of II and IV. Other frequencies do not lead to areas
not already covered by these cases. The incoherent SPS does not extend this territory either,
as it is contained in the area 2na_(3* 2na) f g(2)a f 2, shown in dotted red. Notably, the region
accessible by the Hamiltonian regime does not include nor is included by that accessible with
the cascaded coupling. They do share some common area. In fact, cascaded coupling reduces to
Hamiltonian coupling whenever g_�� ~ �a_�� which, for the cascaded coupling constrain of
g_�� =

˘

�a_��_2, provides the criterion �a_�� ∏ 1_4 for which the conventional formalism is
enough to describe excitation with no feedback. This criterion allows, for instance, to develop
del Valle et al. (2012)’s theory of frequency correlation in a conventional setting without the
explicit need of the cascaded formalism to prevent feedback. In other cases, I have shown that
cascaded coupling allows, surprisingly, to reach regions of the Hilbert space out of reach of a
conventional Hamiltonian dynamics and, in particular, to improve the possible antibunching
for a given population.
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6E X C I TAT I O N O F A T W O - L E V E L S Y S T E M

In an infinite Universe anything can happen.

— Douglas Adams

6.1 introduction

The two-level system (to which Feynman, Leighton, and Sands (1971) refer to as the “two-state
quantum system”) is an important type of oscillator in the quantum universe. In some respects,
it can be seen as the truly quantum oscillator, with a response at the single-particle level, whereas
the (quantum) harmonic oscillator appears instead as a classical oscillator able to sustain non-
classical motion. The 2LS, a fundamental object in any case, rose to gigantic proportion with
Deutsch (1985)’s insight of quantum computation, that turned it into a “qubit”, the elementary
piece of information in the physical universe. It then became of primary importance to control
the dynamics of a two-level system. To this day, this is achieved mainly with classical laser
pulses, thanks to the “pulse-area” theorem shown by Golubev and Kuleff (2014) which states
that any desired final state can be obtained with a suitable pulse. Entire textbooks have been
written on the topic, one of the best ones by Allen and Eberly (1987), and still did not exhaust it.

In this chapter, I study the excitation of the 2LS (or qubit) when driven quantum mechanically,
rather than classically. Here, I focus on the continuous excitation, and leave the pulsed excitation,
of particular relevance for state preparation and quantum information processing, for future
works. I will show that while the quantum states that can be prepared for a 2LS with the source
of quantum excitation are not different than those accessible with the classical excitation, the
dynamical emission, on the other hand, can reach new regimes. As an application, I will show
how this can be used to engineer better single-photon sources. To a large extent, the problem
posed in this Chapter also addresses the fundamental question of what defines strong-coupling.
The excitation of a 2LS by light falls largely in the framework of resonance fluorescence, whose
most notable manifestation is the so-called Mollow (1969) triplet, which we have already
discussed at length in the previous chapters. This occurs when the intense excitation (by a
classical laser) of a 2LS dresses its bare states (ground gÎ and excited eÎ) to give rise to new
eigenstates from their quantum superposition ±Î í (gÎ± eÎ _2. The coupling is mediated by
the classical laser that, being a c-number parameter, does not directly appear in the structure of
the Hilbert space and thus neither in the quantum state. I will discuss in detail the nature of
these dressed states when quantizing the excitation field and how various quantum states leads
to various results.

The rest of the Chapter is organized as follows. Section 6.2 adapts the formalism which has
been amply motivated and introduced in Chapter 5 to the 2LS. In Section 6.3, I study which
states of the 2LS are accessible under quantum excitation and I show how, in the continuous
driving regime, classical excitation is more suitable than driving by, say, a Single-Photon
Source (SPS), in terms of the accessible states in the Bloch sphere. In Section 6.4, I discuss
how strong-coupling takes place with the more general case of quantum light as the driving
agent. Beyond a new definition for strong-coupling needed to accommodate quantization of the
driving light-field, this discussion will also allows us to pinpoint which features are specific to
the classical driving by contrasting all the variants of the Mollow triplet under various types
of excitation. For instance, I will revisit the mysterious Heitler effect, already mentioned in
Chapter 3, whereby the coherent absorption-emission processes in the low driving limit result in
photons with the first-order coherence of the source (the laser) and the second-order coherence
of the target (the 2LS). As such a source of spectrally narrow antibunched photons is of high
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Figure 6.1: (a) A 2LS is driven by the emission of a quantum source. In this particular case, the quantum
source is made of a 2LS driven by a classical source. (b-f) Accessible states of the 2LS under different
driving configurations, as seen by the accessible volume in the Bloch sphere. The states of the equator
of the sphere are Û

Û

 ±

⌘

= (0Î± 1Î) _

˘

2 and Û

Û

�±
⌘

= (0Î± i 1Î) _
˘

2. (b) Incoherent excitation: this kind
of excitation does not generate coherence in the 2LS, so all the accessible states lie along the z–axis
of the Bloch sphere. (c) Coherent excitation: this kind of excitation does not allow the qubit to have a
population larger than 1_2, so all the accessible states lie in the south hemisphere of the Bloch sphere. The
source 2LS is allowed to go only in one half an the ellipsoid, while the target 2LS can cover the ellipsoid
completely. (d) Mixed excitation: under this driving the source 2LS can access a symmetrical region in the
north hemisphere of the Bloch sphere. However, the region available to the target 2LS does not increase.
(e) Rotating the direction of the excitation of the source 2LS allows it to access the regions otherwise out of
reach, thus filling the entire ellipsoid. (f) Exciting with a source that generates the transition +Î Í0 allows
the source 2LS to access states with mean population 1_2 but not completely mixed.

technological interest, the understanding of its underlying principle is important. In Section 6.5,
I take advantage of this understanding to design better SPS by turning the target into a source
of its own, that excites still another 2LS. I will show how better antibunching can be achieved in
this way that overcomes the Rayleigh scattering. Section 6.6 concludes.

6.2 theoretical description

Like in the previous Chapter, we use the cascaded formalism introduced in Section 1.2.1.2 to
described the excitation of a target by a quantum source. However, in this Chapter we focus
on a 2LS as the target (with annihilation operator ⇠) and consider various sources that will be
introduced as they are referred to. Taking for instance another 2LS with annihilation operator �
as the source, as sketched in Fig. 6.1(a), the resulting master equation takes the form of Eq. (1.28)
with c

1
= � and c

2
= ⇠, both following the Pauli algebra. Furthermore, each system has a decay

rate �c and a Hamiltonian Hc , for c = � , ⇠. We now proceed to investigate which regions of the
Hilbert space of the target 2LS are accessible under various types of driving.
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6.3 accessible states

While in the previous Chapter we had to introduce a new charting of the harmonic oscillator’s
Hilbert space to map the states created by quantum excitation, there has long been a com-
prehensive representation for the two-dimensional Hilbert space of the 2LS: the Bloch sphere,
which Bengtsson and Życzkowski (2008) have shown to describe unambiguously pure states,
since the sphere is a projective space for two complex lines (↵, �) À C2 and pure states of the
2LS are given by the wavefunction:

 Î = ↵ 0Î+ � 1Î . (6.1)

The mapping is complete since it also accounts for the phase between the probability amplitudes.
Feynman, F. L. Vernon, and Hellwarth (1957) have shown that the quantum dynamics of a 2LS
also evolves naturally in this geometry, as it can accommodate mixed states inside the Bloch
sphere (pure states lie on its surface). Mixed states are expressed by a density matrix, which is
also determined by two numbers: the population and the coherence of the qubit:

⇢ =

H

1* n� Í�Î<

Í�Î n�

I

, (6.2)

where n� í Í�†�Î, the 2LS population, is such that 0 f n� f 1, and Í�Î, the coherence of the
qubit, is a complex number. Since the eigenvalues of the density matrix must be non–negative,
the coherence of the qubit has an upper bound: Í�Î2 f n�(1* n�). The state in Eq. (6.2) is pure
if Tr(⇢2) = 1, i.e., if Í�Î2 = n�(1 * n�), in which case the states in Eq. (6.1) and Eq. (6.2) are
equivalent, with n� = �2 and Í�Î = ↵�<. Thus, any state in the form of Eq. (6.2) is represented
in the Bloch sphere as a point with Cartesian coordinates:

x = 2RÍ�Î y = *2IÍ�Î and z = 1* 2n� , (6.3)

such that x2 + y2 + z2 f 1. The amount of vacuum and excitation, often referred to as population
imbalance, varies along the z-axis. The relative phase between the vacuum and the excited state
is given by � = arg Í�Î and varies around the x–y plane.

6.3.1 Incoherent driving

To contrast the excitation of a 2LS by quantum light with the usual counterpart of classical
excitation, we must first remind (and in some cases possibly derive for the first time) the
situation in the latter case. We will see throughout that the need to understand the quantum
excitation also teaches us on features of the more familiar classical case.

The expected value of the coherence, Í�Î, of an incoherently driven 2LS is zero, so its
steady–state density matrix is fully determined by its population:

ninc� =
P�

P� + ��
, (6.4)

where P� is the rate of incoherent driving. The accessible states under incoherent excitation
cover the entire z–axis, as shown in the Bloch sphere at the left of Fig. 6.1(b). Using this 2LS as
a source for another 2LS reduces the span of accessible area. Namely, the steady–state of the
target 2LS, also completely determined only by its population, reads:

ninc⇠ =

4ninc� ��(P� + �� + �⇠)

P 2

� + (�� + �⇠)2 + 4�
2

�⇠ + 2P�(�⇠ + 5��)
, (6.5)

where �⇠ is the decay rate of the target 2LS, and ��⇠ = !� * !⇠ is the detuning between the
source and the target. The accessible states are shown in the Bloch sphere at the right Fig. 6.1(b),
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and unlike the source 2LS that can be saturated to its excited state by incoherent pumping, the
population of the target 2LS lies between 0 f ninc⇠ f 0.3535. The upper bound 0.3535 ˘ 7_20 is
obtained in the regime P� ˘ �� for the source, in which case ninc� = 1_2, and when �⇠ ˘ �� . The
reason for this saturation is a type of self-quenching, here induced by the power broadening of
the source. This shows clearly the intrinsic limitations of exciting with a 2LS. One can increase
the emission rate, but this comes at the expense of other fundamental parameters such as the
spectral broadening. In contrast, one can increase the emission rate of a cavity independently of
its spectral width.

6.3.2 Coherent driving

In the case of coherent classical driving of the source, its population and coherence are given
by:

ncoh� =

4✏
1
⌦
2

�

�2� + 4õ!2

� + 8✏
1
⌦2

�
and Í�Îcoh =

2
˘

✏
1
⌦�(2õ!� + i��)

�2� + 4õ!2

� + 8✏
1
⌦2

�
, (6.6)

where ⌦� is the rate of coherent excitation, ✏
1

is the amplitude of the channel through which
we drive coherently the source, and õ!� = (!� *!L

) is the detuning between the driving laser
and the 2LS. Unlike the incoherent excitation, these states now span a volume in the Bloch
sphere, which means that they have some degree of purity, the higher the closer to the ground
state. Also, since coherent driving forbids population inversion, this volume is restricted to the
southern hemisphere of the Bloch sphere, reaching population n� = 1_2 at most in a maximally-
mixed state. Finally, the phase of the driving laser also fixes the phase of the excitation of the
2LS, so only one half of the southern hemisphere is accessible. The final accessible volume is
shown in the left Bloch sphere in Fig. 6.1(c). Its boundaries are given by the shell of an ellipsoid
with equation:

1 =

H

x
˘

2_2

I2

+

H

y
˘

2_2

I2

+

0

z* z
0

1_2

12

, (6.7)

with z
0
= *1_2, x f

˘

2_2 and *
˘

2_2 f y f 0.
The expressions for the population and coherence of the target 2LS are not as straightforward

as for the source 2LS, and although they can be found in closed form, they are too lengthy to
be written here. As an illustration of their complexity, we provide the particular case when the
driving laser, the source 2LS, and the target 2LS are in resonance, in which case the population
and the coherence of the target 2LS reduce to:

ncoh⇠ = 16✏
1
⌦
2

�(1* ✏1)�û10 ù
⌧

�3û11�û21�û12 + 8✏
1
⌦
2

�(2�
3

û10
+ 6�2û10�û01 + �û10�

2

û01
(1* ✏

1
) + 3�3û01) + 64�û01✏

2

1
⌦
4

�

�

�

N< , (6.8a)

Í⇠Îcoh = *4i
t

�û10�û01✏1(1* ✏1)⌦��û10
$

�3û11�û12�û21 + 8�2û11✏1⌦
2

�
⌅

4�û01 + �û10(8✏1 * 3)
⇧

+

+ 128✏2
1
⌦
4

�
⌅

�û01 + �û10(2✏1 * 1)
⇧� �

N< , (6.8b)

with the normalization constant defined as

N<
= �û01�

2

û10
�3û11�û21�û12 + 8�2û11✏1⌦

2

�

⌧

2�4û01 + 7�3û01�û10 + 12�2û01�
2

û10
+ 2�û01�

3

û10
(13* 10✏

1
) + 8�4û10(1* ✏1)

�

+

+ 64✏2
1
⌦
4

�

⌧

5�4û01 + 2�û01�
3

û10
(23* 20✏

1
) + 3�2û01�

2

û10
(21* 16✏

1
) + 2�3û01�û10(17* 10✏

1
) + 8�4û10

�

+

+ 1024✏3
1
⌦
6

�

⌧

�2û01 + �û01�û10(3* 2✏
1
)

�

,

and where we have used the notation introduced in the previous Chapter after Eq. (5.12)have
introduced the notation, �kûmn í (m�� + n�⇠)k. Interestingly, while Eqs. (6.8) for the target have a
much more complicated form than Eqs. (6.6) for the source, they lead to the same accessible
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volume of the type of Eq. (6.7). At such, unlike the case of incoherent excitation, the target
suffers no restriction of its accessible region under quantum excitation by a coherent excited 2LS
as compared to direct excitation from the coherent source. In fact, since the phase of excitation
is not fixed by the source, the accessible volume of the target 2LS is given by the full ellipsoid
in Eq. (6.7) with y f

˘

2_2, as shown in the rightmost Bloch sphere of Fig. 6.1(c).

6.3.3 Mixture of coherent and incoherent driving

The source 2LS can drive its target from the entire z–axis when driven incoherently to half
an ellipsoid in the southern hemisphere when driven coherently. Mixing the two types of
excitations allows the source 2LS to access a volume in the northern hemisphere as well,
symmetric to the volume accessible by coherent excitation only, as shown in Fig. 6.1(d). The
expressions for the population and the coherence in this case are:

nmix

� =

P�[(P� + ��)2 + 4õ!2

�] + 4✏
1
⌦
2

�(P� + ��)
(P� + ��)[(P� + ��)2 + 4õ!2

� + 8✏
1
⌦2

�]
, (6.9a)

Í�Îmix
=

2
˘

✏
1
⌦�(P� * ��)[2õ!� + i(P� + ��)]

(P� + ��)[(P� + ��)2 + 4õ!2

� + 8✏
1
⌦2

�]
, (6.9b)

from which we see that the condition to access the volume in the northern hemisphere, i.e.,
n� g 1_2, is simply that P� > �� . The northern-hemisphere volume is enclosed by the ellipsoid
in Eq. (6.7) with z

0
= 1_2, x f

˘

2_2 and 0 f y f
˘

2_2.
However, exciting the 2LS with this mixture of drivings (to allow its steady state to reach

points in the northern hemisphere away from the axis) does not make it a quantum source
able to drive the target 2LS beyond the southern-hemisphere ellipsoid of coherent excitation,
shown in Fig. 6.1(c). The expressions for the population and coherence of the target 2LS in this
case are analytical as well, but even at resonance and using the compact notation of Eq. (6.8),
they are too bulky to be written here. Note that by changing the direction from which the laser
drives the source 2LS, or by using waveplates, one can rotate its phase, changing � for ei✓� in
the master equation (1.28). This variation leaves the population of the source 2LS unchanged,
but adds a phase to its coherence. In this way, the source 2LS can span all states in a volume
obtained by revolving around the z–axis. The same holds for the case of mixed excitation, and
therefore the total accessible volume of the source 2LS is given by two full ellipsoids as shown
in Fig. 6.1(e).

Overall, these results show that a 2LS as a source of excitation is no more advantageous than
classical sources as far as accessible volumes in the Bloch sphere and in the steady state are
concerned. The target is “quantum-enough” not to benefit further from quantum excitation (at
least when it comes from a SPS) as compared to classical excitation. We will see later in the
Chapter that this is because we consider the target in isolation, and that including quantum
correlations with the source indeed lead to departures and benefits from a quantum driving.

6.3.4 Phenomenological quantum source

So far we have modeled the quantum source by describing it fully and self-consistently, coupling
its output to a target through the cascaded formalism. The excitation of the source itself was
achieved phenomenologically from the Lindblad formalism. One could also in principle take a
simpler route by describing directly the quantum source through ad-hoc Lindblad terms. This
is an expedient way to see whether quantum excitation can bring us to regions beyond those of
access from the classical case, that lie in an ellipsoid of, for most of the cases, mixed states (not
on the surface of the sphere). In particular, a common feature of all the kinds of excitation we
have considered is that the state with population 1_2 is completely mixed, i.e., it is located at
the origin of the sphere.
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We now show how to drive the target 2LS to reach states with population 1_2 but with
nonzero coherence. Specifically, we assume a source that emits photons in the state +Î� =

(0Î+ ei� 1Î)_
˘

2. At the simplest level, the incoherent type of such an excitation is described
with Lindblad terms in the master equation (1.28) of the type (P <_2)Lx⇢, where x = +Î� Í0 is
the operator that brings the vacuum state into +Î� and P < is the rate at which this excitation is
enforced onto the target. The resulting population and coherence of the source 2LS in this case
are given by:

n+� =
P <(P < + 2��ei�)

P < 2 + 4�2� + 4P <�� cos 2�
and Í�Î+ =

2P <��
(P < + ��)(P <e2i� + 2��)

, (6.10)

where the phase � must be chosen so that n+� À R. The accessible volume with � = 0 is shown
in Fig. 6.1(f). This case demonstrates a type of quantum excitation that drives the 2LS target
into a volume of the Bloch sphere that strongly differs from the classical counterpart. The
cw-excitation spoils the coherence, and even a source that explicitly drives the 2LS into the
+Î state cannot sustain completely its coherence of the 2LS. Nevertheless, this indicates that
the general case of quantum excitation does ultimately bring us further than the classical
case, even though the SPS does not. Importantly, to clarify this point at this stage, we have
assumed a simple phenomenological model for a particular case. It is not clear how such a
source could be devised from an Hamiltonian in the first place before it is plugged to its target
through the cascaded formalism. For instance, a close counterpart that emits photons in the
state +Î� = (0Î+ ei� 1Î)_

˘

2 with a complex superposition (� Ã {0,⇡}), that is easily conceived
conceptually, cannot be described in the above Lindblad form since this results in non-real
coefficients of the master equation that yield unphysical density matrix (and, e.g., complex
populations).

6.4 mollow dressing

6.4.1 Introduction

In this Section, we go beyond which average quantum state a target 2LS can be driven into to
consider instead some deeper structural aspect, namely, we describe the energy spectrum and
its associated set of states. The naked 2LS has the simplest possible structure of a vacuum gÎ

and an excited state eÎ. When placed inside a cavity, in absence of dissipation, a new set of
quantum states for the combined system takes over, which Jaynes and Cummings (1963) have
shown are eigenvectors for the coupling Hamiltonian: (gnÎ+ e, n* 1Î)_

˘

2 at resonance with n
the number of photons in the cavity. The respective pair of energies constitutes one stair of
the Jaynes–Cummings ladder, that repeats this structure for each integer n. These states are
entangled and go by the name of “polaritons” or “dressed states”. In presence of dissipation, a
notion of weak-coupling and strong-coupling emerges to distinguish cases where bare states
g, eÎ and nÎ dominate the dynamics as dissipation destroyed their quantum superpositions. In
the former case the coupling is classical while in the latter it binds the states through quantum
nonlocality. This is a central concept of cavity QED but one that remains vaguely defined as
rooted in the simple Hamiltonian framework. When including dissipation, the dressed-states
energies become complex as a result of their finite lifetime, and acquire a broadening specific
to their constitution in terms of bare states in addition to a renormalized energy. This has
been explained for two coupled harmonic oscillators, but del Valle, Laussy, and Tejedor (2009)
have shown that already the textbook case of the 2LS in a cavity displays a much less familiar
structure, the so-called “dissipative Jaynes–Cummings ladder”, with coexistence of weak and
strong-coupling depending on the manifold of excitation. Such a description can be applied to
other systems, as illustrated by Quesada (2012) with the dissipative Tavis–Cummings ladder.
Besides, del Valle and Laussy (2011) demonstrated that when including, beyond mere decay,
also an excitation scheme, the situation can become extremely complex. The simplest problem
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Source Target Treated in
Classical laser Mollow triplet Section 6.4.3
2LS excited incoherently Unresolved Mollow triplet Section 6.4.4
2LS excited coherently Mollow triplet with attenuated sidebands Section 6.4.5
Cavity excited incoherently Deformed singlet Section 6.4.6
Cavity excited coherently Mollow triplet Section 6.4.7
One-atom laser Quintuplet to Mollow triplet transition Section 6.4.8
N-photon source Quantum Mollow triplet Chapter 8

Table 6.1: Classification of the shape of the emission of the target 2LS according to the source driving it.

of this type—the celebrated Mollow (1969) triplet— is the context for which Cohen-Tannoudji
and Reynaud (1977) first spoke about the “dressed states”. In this Chapter, where we study
quantum driving of a 2LS, we are naturally brought to consider how the quantum features of
light affect the 2LS target’s state. In the limit where light is coherent, we expect to recover the
conventional Mollow scenario, as is already known to be the case from the Jaynes–Cummings
perspective where light is quantized, in agreement with the results from del Valle and Laussy
(2010).

We will now turn to the more general problem of how a 2LS target becomes affected by
quantum excitation without feedback, i.e., beyond the Hamiltonian formalism (the cases that
will be dealt with are summarized in Table 6.1). This poses some immediate questions such as:
Can a single-photon source dress a 2LS? Are Rabi oscillations—exchanges of excitation between
the modes—necessary for state-dressing? If so, how can this be achieved in the cascaded
formalism where feedback is precisely forbidden? Does the Mollow theory of a c-number
description of the exciting laser break down in some regime, say of low excitation? These and
other fundamental questions are answered in the remaining of this Chapter.

6.4.2 Complex energy spectrum

We define strong-coupling as the emergence of resonances in the system with real energies
different from those of the bare states. Laussy, del Valle, and Tejedor (2009) showed that such
resonances are obtained in a dissipative system from the eigenvalues Dp of the Liouvillian
matrix M , which follows from writing Eq. (1.28) as:

)t»⇢«= *M»⇢« (6.11)

where »⇢« is the density matrix laid out in vectorial form, namely,

»⇢«= (⇢
11
, ⇢

21
,5 , ⇢n1, ⇢215 ⇢nn)T , (6.12)

for some truncation n that can be taken to go to ÿ. This gives access to the “transitions” in
the system, rather than directly to the energies of the states. Weisskopf and Wigner (1930)
already identified this nuance in the first considerations of light-matter interactions. From
the knowledge of the transitions, however, one can usually reconstruct the underlying energy
structure of the system, that is, both the composition of the dressed states and their associated
energies. A typical observable is the total emission emission spectrum that results from the
combined emission between the various states:

S(!) = 1

⇡
…

p

Lp(�p_2)*Kp(!p *!)
(�p_2)2 + (!p *!)2

, (6.13)

where Dp í �p_2 + i!p is the pth resonance, i.e., eigenvalue of M , that defines the energy
structure of the system, and Lp and Kp are the corresponding weights for this transition that
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determine its prominence in the total emission accordingly with the state and dynamics of
the system. The term Lp weights a pure Lorentzian emission, corresponding to spontaneous
emission from the initial state towards the final one, while Kp brings a dispersive correction that
is typical of coupled oscillators and that results in our case from interferences between transitions
that overlap in energy. In finite-size Hamiltonian systems or those that can be decomposed into
a direct sum of uncoupled manifolds, such as the Jaynes–Cummings Hamiltonian, the most
important structure comes from Dp alone. In infinite-size systems where the system cannot be
closed in a self-consistent way, for instance because an excitation term connects all the manifolds,
one then needs to weight the transition Dp with Lp + iKp as otherwise different truncation
schemes of M give different results for the complex energy spectrum, whereas the weighted
transitions converge to a physical result. For this reason, the complex weight is fundamental as
well. It is obtained, following Laussy, del Valle, and Tejedor (2009), as

Lp + iKp =
1

n�
Tr

T

�
⇢

Eip
…

n
E*1pn »⇢ss�

†«n
�

U

, (6.14)

where ⇢ss is the steady-state solution of the master equation, � is the annihilation operator of the
2LS, n� = Tr(�†�⇢ss) is its population and E is the matrix of eigenvectors of M (i.e., E*1ME is
the diagonal matrix of complex energies). Here »M«n refers to the nth element of the flattened
matrix M and fiVfl refers to the reversed process that shapes the vector V (of size n2) into a
matrix as ((V

1
,V

2
,5 ,Vn), (Vn+1,Vn+2,5V

2n),5).
In the following Sections, we start a comprehensive analysis of the complex energy spectrum,

and the structure of states (bare and dressed) associated to it, for the configurations of excitation
of a 2LS listed in Table 6.1. Namely, in Section 6.4.3 we start with the conventional Mollow
triplet, where a classical field drives a 2LS, then in Section 6.4.4 we replace the classical field by
the simplest quantum light, i.e., that emitted by a SPS; in Section 6.4.5, the SPS is brought itself
in the Mollow triplet regime. Then we come back to the conventional Mollow configuration of
light exciting a 2LS, but with light described by an operator rather than by a c-number. This
will allow us to i) see what is lost in the approximation of describing the laser as a sine-wave
and ii) consider classical excitation beyond merely a coherent state. Specifically, we consider in
Section 6.4.6 a thermal state of the light-field (chaotic light), in Section 6.4.7 a coherent state (the
closest to the conventional Mollow case), and, finally, in Section 6.4.8, we take an additional
step in describing the quantum dynamics of an actual laser acting as the source to drive the
2LS, taking the simplest case of a one-atom laser to do so. All these cases bring some variations
to the problem. Their common features give a picture of what constitutes the substance of the
Mollow triplet.

6.4.3 Excitation by a classical field

The simplest classical excitation of a 2LS is that provided by a thermal source, or incoherent
pumping, that brings the system into its excited state at a rate P� . For completeness, we address
this case as well before we turn to coherent excitation that leads to Mollow physics. The 2LS
incoherently pumped is described by the master equation:

)t⇢ = i[⇢,!��†�] +
��
2
L�⇢+

P�
2
L�†⇢ , (6.15)

where !� is the free energy of the 2LS and �� its decay rate, with M-matrix (defined as in
Eq. (6.11)):

M =

`

r

r

r

r

r

p

P� 0 0 *��
0 ��_2 + i!� 0 0

0 0 ��_2 + i!� 0

*P� 0 0 ��

a

s

s

s

s

s

q

, (6.16)
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where �� í �� + P� . The result is in this case trivial, as the only eigenvalue with nonzero weight
is D

1
= ��_2 + i!� with weight L

1
+ iK

1
= 1, i.e., purely Lorentzian. Note how including the

complex weight in the computation of the complex energy spectrum allows us to retain the one
relevant resonance while the matrix M otherwise features four. As a conclusion, as expected, a
2LS excited incoherently is simply excited and release this excitation with the same energy by
spontaneous emission, with a photoluminiscence spectrum given by:

S(!) = 1

⇡
��_2

(��_2)
2 + (!� *!)2

. (6.17)

There are no dynamical effects, shifts, dressing, renormalization of any sort. We now see how
this changes considerably when upgrading the incoherent excitation to a coherent one.

The excitation of the 2LS by a coherent classical field, i.e., a c-number ⌦� exp(i!L
t) with ⌦2

�
the intensity of the driving laser, brings us to the Mollow master equation shown in Eq. (1.44).
In this case, and considering the laser resonant to the 2LS, the Liouvillian matrix becomes

M =

`

r

r

r

r

r

p

0 *i⌦� i⌦� *��
*i⌦� ��_2 0 i⌦�
i⌦� 0 ��_2 *i⌦�
0 i⌦� *i⌦� ��

a

s

s

s

s

s

q

, (6.18)

which has a more complex set of eigenvalues:

D
1
= 0 , (6.19a)

D
2
= ��_2 , (6.19b)

D
±
=

1

4

0

3�� ±
t

�2� * 64⌦2

�

1

. (6.19c)

The imaginary part of these quantities, that correspond to the energies of the transitions (real
parts correspond to their broadening), are shown as a function of the intensity of the driving
laser in Fig. 6.2(a). Their corresponding weight is encoded in the colour: positive weights have
blue shade while negative ones have a red shade.

This simple structure subtends a complex and rich phenomenology. At low intensity, D
±
˘

��(3 ± 1)_4 and the emission spectrum is as shown in Fig. 6.2(b), where D
2

is shown as the blue
lorentzian and D

*
is shown as the red negative lorentzian. The peak due to D

1
corresponds

to the light scattered by the 2LS from the laser (not shown) and is known as the Rayleigh
peak. This peak has zero linewidth, and is involved in the Heitler (1944) process that generates
antibunched photons with the coherence of the driving laser.

In this case, and as long as ⌦� f ��_8, the spectrum consists of a single line as the eigenvalues’
imaginary parts (that correspond to the states energies) are all degenerate. The combination of
Eqs. (6.13) and (6.19) yields the emission spectrum of the 2LS:

S�(!) =
1

2⇡
��_2

(��_2)2 +!2
+

1

4⇡�
(3�� * �)_4

[(3�� * �)_4]2 +!2

8(� + 5��)⌦2

� * �
2

� (�� + �)
8⌦2

� + �2�
+

+
1

4⇡�
(3�� + �)_4

[(3�� + �)_4]2 +!2

8(� * 5��)⌦2

� + �
2

� (�� * �)
8⌦2

� + �2�
, (6.20)

where � =

t

�2� * 64⌦2

� , and which in the limit of vanishing driving, ⌦� ô 0, becomes as in
Eq. (1.47). This total emission spectrum is shown with the black dashed line in Fig. 6.2(b) along
with its decomposition into the underlying transitions (here not split). The dressed states, in
red and blues, are largely compensating each other. This is the process of coherent absorption
and re-emission that endows this regime with peculiar properties. Beside, in this regime the



110 excitation of a two-level system

Figure 6.2: Excitation by a co-
herent source. (a) Energy spec-
trum of a coherently driven 2LS.
The energies that contribute
to the total emission spec-
trum with positive lorentzians
are shown in blue, whereas
those contributing as negative
lorentzians are shown in red.
(b-d) Emission spectra of the
target 2LS (dashed, black lines)
for the values ⌦�_�� marked
by the vertical dashed lines in
Panel (a). The total emission
spectrum is made of the sum
of positive (blue lines) and neg-
ative (red) lorentzians, and dis-
persive functions (dotted pur-
ple).

(a) (b)

(c)

(d)

light emitted by the 2LS is essentially coming from the Rayleigh peak (not shown). As a result
of this structure of emission from the 2LS, the light emitted is antibunched and originates
mainly from the Rayleigh peak, that has the first-order coherence of the laser (it is a � peak
for a c-number driving field). This is a strong feature of resonance fluorescence that has been
observed by several groups, including Nguyen et al. (2011), Matthiesen, Vamivakas, and Atatüre
(2012), Proux et al. (2015), and Al-Khuzheyri et al. (2016). However, the discussion made in
these works did not take into account the effect of the observation, as we have discussed in
details in Chapter 3.

As far as strong-coupling is concerned, the situation of interest is that of energy splitting
between the dressed states. This occurs when:

⌦� > ��_8 , (6.21)

and is shown in Figs. 6.2(a) and (c). Note that, strikingly, the split states have a negative weight,
i.e., correspond to absorbing lines. While their position is consistent with the conventional

dressed-state picture with energies !
±
= ±

t

64⌦2

� * �2�_4, the dynamics involved is opposite
to that of new states radiating at their corresponding energy. Instead, they enter the scene
by absorbing energy. They start to emit light instead of taking it away for the more stringent
condition (cf. Eq. (6.21)):

⌦� > ��_
˘

8 , (6.22)

Figure 6.2(d) shows the emission spectrum for ⌦ = �� with, in this case, an active contribution
from all the dressed states that result in the characteristic emission spectrum as a triplet that
is clearly understood from the dressed state structure. In the limit of very large intensity,
D

±
˘ 3��_4 ± 2i⌦� , and the emission spectrum is the well-known Mollow (1969) triplet given in

Eq. (1.49). The satellites contribute negatively to the total spectrum when they are close to the
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center, with effect of trimming the fat tails of the central Lorentzian. As a result, the system
emits with a sharper distribution of frequencies, typically a Student t distribution (that results
from the difference of two Lorentzians, as shown in Fig. 6.2(b)). This allows to collect more
easily all the emitted photon in a narrower window of detection and, therefore, to achieve
better values of antibunching. On the opposite, when the Mollow triplet is largely split, it
consists of essentially three non-overlapping Lorentzian lines (of linewidths 3��_4 and �� for the
central and satellite peaks, respectively), its statistical properties recover those of an incoherently
pumped 2LS. This understanding of the composition of the Mollow triplet, even before it is
fully-formed, is important not only on fundamental grounds, but also since it can be used to
engineer better single-photon sources, as we will see in Section 6.5.

6.4.4 Excitation by a single-photon source

In this and the following four Sections, we upgrade the source of excitation from a classical
to a quantum field. The simplest quantum field is that provided by a single-photon source,
which is modeled by an incoherently driven 2LS, as sketched in Fig. 6.1(a) with a thermal field
(incoherent pumping) providing the classical excitation, and is described by Eq. (1.28) adding
the lindblad term (P�_2)L�†⇢. The resulting Liouvillian matrix M has dimension 16 ù 16 but
only four of the sixteen eigenvalues contribute to the steady-state emission spectrum. These
eigenvalues are solutions to cubic equations that are too bulky to be written here. In Fig. 6.3(a-i),
I show the weighted energy spectrum of the target 2LS as a function of the intensity of the
incoherent driving. For clarity, I split the positive (1st column) and negative (2nd column)
contributions that are shown together in the third column, with the same color code (blue,

Spectral decomposition

(j)

(k)

(l)

Positive Energy Spectrum

(a)

(d)

(g)

(b)

(e)

(h)

Negative Energy Spectrum

(c)

(f)

(i)

Total Energy Spectrum

Figure 6.3: Excitation by a single–photon source. (a-i) Energy spectra of the target 2LS. The energies that
contribute to the total emission spectrum with positive lorentzians are shown in blue, whereas those that
contribute with negative lorentzians are shown in red. (j-l) Emission spectra of the target 2LS (dashed,
black lines) for the values P�_�� marked by the vertical dashed lines in Panel (f). The total emission
spectrum is made of the sum of positive (blue lines) and negative (red lines) lorentzians. To compute the
figures we set �� as the unit, and set �⇠_�� = 0.1 in Panels (a-c), �⇠_�� = 1 in Panels (d-f), and �⇠_�� = 10 in
Panels (g-i).
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overall positive; red, overall negative). The upper row, Figs. 6.3(a-c), shows the case where
�⇠_�� = 0.1 and the driving is too weak to dress the energies of the target 2LS: it behaves like its
classical counterpart under incoherent pumping. Figure 6.3(d-f) shows the case where �⇠_�� = 1,
that results in a splitting of the energy levels, with a splitting that opens with absorbing lines
before turning to emitting dressed states, as in the case of a 2LS driven by a coherent classical
field. Unlike the latter, however, the splitting eventually quenches with increasing pumping rate.
This can be explained by the fact that the target 2LS is not driven efficiently in the high excitation
regime since the emission spectrum of the source 2LS broadens (cf. Eq. (6.17)), reducing the
intensity at the frequency of the target 2LS. In Fig. 6.3(f), we select three values for P�_�� for
which the total emission spectrum (dashed black line) is decomposed into its dressed state
emission (emitting in blue and absorbing in red), as shown in Fig. 6.3(j-l). The magnitude of the
lorentzians at the splitted energies is not large enough to result in an observable splitting in
the total emission spectrum of the target 2LS. Figure 6.3(g-i) shows the case where �⇠_�� = 10,
with a third scenario of an energy splitting that occurs only with absorbing dressed states, but
with a magnitude of the splitting that is larger than in the previous case. This case also fails to
produce an observable splitting in the total luminescence spectrum. Even though the power
spectrum remains a single-peak throughout, one can still dress a 2LS with a SPS. The energy
splitting of the target 2LS occurs when the following condition is satisfied:

�⇠_�� g

b

f

f

f

d

P <4� * 68P <3� + 726P <2� + 1* 8

t

*2P <�
�

P <2� * 16P <� + 1
�3

P <2� * 14P <� + 1

c

g

g

g

e

1_2

, (6.23)

where I have introduced the dimensionless parameter P <� = P�_�� , and noting that the condition
is valid only when the argument on the right-hand side (rhs) of the inequality is a real value.
The lower bound for P <� is the real-valued zero that cancels the rhs of Eq. (6.23), which is the
solution of a polynomial of order 8 for which I give a numerical approximation. When the rhs of
Eq. (6.23) is real, it ranges from zero to infinity, which translates to a condition on the population
of the source 0.93 ¿ n� ¿ 0.88. Equation (6.23) thus provides the criterion for strong-coupling of
a 2LS with the light emitted in the CW regime by a SPS. While the criterion shows that this
is possible with the source 2LS close to saturation, it also shows the conditions as required
by the formula, are not particularly enlightening. Since the complex energy spectrum remains
(relatively) simple, one can go in this case one stage deeper and reconstruct from the resonances
the structure of the dressed states.

The archetype of the energy spectrum of a 2LS driven by a single-photon source, and the
corresponding linewidths are shown in Fig. 6.4(a) and in Fig. 6.4(b), respectively. The black solid
lines in the figures correspond to transitions between the bare modes, i.e., from 1Î� 1Î⇠ = 1, 1Î
to either 1, 0Î or 0, 1Î, and from either 1, 0Î or 0, 1Î to 0, 0Î. The blue and red dashed lines
correspond to transitions involving dressed states that we note as

Û

Û

I
±

⌘

= ↵ 0, 1Î+
˘

1* ↵2e±i� 1, 0Î , (6.24)

where 0 f ↵ f 1. However, the appearance of the dressed states do not imply the absence of the
bare state. On the contrary they coexist giving rise to transitions from 1, 1Î to either Û

Û

I
+

⌘

or
Û

Û

I
*
Î, but only from 0, 1Î to 0, 0Î: when the energy levels are splitted, the transition from 1, 0Î

to 0, 0Î is suppressed as all the emission of the source 2LS is efficiently absorbed by the target
2LS, and instead takes place the coherent transfer from 1, 0Î to 0, 1Î. Therefore, the schematic
representation of the energy levels of a 2LS driven by a single-photon source is as shown in
Fig. 6.4(c), where we show the coexistence of the bare and dressed states in the single-photon
manifold.
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Energy StructureAllowed transitions

(a)

(b)

(c)

Figure 6.4: Energy structure of a 2LS driven by a single photon source. (a) Energy change in due to the
allowed transitions in the 2LS. (b) Linewidth of the emission of the 2LS due to the allowed transitions. The
transitions that involved the dressed states are shown by the dashed red and dashed blue lines. Panel (a)
shows a splitting in the transition energies, while Panel (b) shows that those transitions have the same
linewidth. (c) The energy structure of the 2LS driven by a single photon source is obtained from the
allowed transitions in Panel (a).

6.4.5 Excitation by a Mollow triplet

In this Section, we keep the same source 2LS but we excite it coherently. This systematic
study of all the possibilities of exciting a 2LS by quantum light thus brings us to this curious
configuration of exciting a 2LS by the Mollow triplet. The system is described by Eq. (1.30),
using two input channels for the source with ✏

1
= ✏

2
= 1_2, setting H� = *i

˘

✏
1
��E(�† * �),

and for simplicity we note ⌦� í
˘

✏
1
��E as the intensity of the coherent light that drives the

source 2LS. As in the previous section, the Hilbert space has dimension 16 ù 16, but in this
case all the eigenvalues are involved in the energy spectrum of the target 2LS, as shown in
Fig. 6.5 for several values of the ratio �⇠_�� . The most obvious observation is the considerably
higher complexity of the structure of the driven system. In this case, we will focus only on
the resonances without making any attempt at reconstructing the underlying dressed states,
as we did for the simplest configuration of exciting with a SPS. Panels (a-c) show the case for
�⇠_�� = 0.1. The splitting also starts with absorbing states and occurs for a driving intensity
⌦�_�� ˘ 0.02, that is is roughly one order of magnitude smaller than that required with a
classical laser (⌦�_�� = 1_8). Other states do split at that usual threshold, suggesting that the
target 2LS incorporates the energy structure of the source to its own. In fact, at large driving
intensities, most of the energies converge to those of the source 2LS to provide a carbon copy of
the conventional Mollow triplet, cf. Fig. 6.2. The most intense contributions to the total emission
spectrum remain those provided by eigenvalues for which �!

P
_�� < 1.

The total emission spectrum (dashed black lines) and its decomposition through dressed
states emission (blue and red solid lines) are shown in Fig. 6.5(j-l) for the values of ⌦�_��
marked by the vertical dashed lines in panel (c). Panel (j) displays another case of emergence
of the dressed states as absorbing lines, beside, in this case, also strongly interfering with
important dispersive components (dotted lines). As a result, the total spectrum broadens as
compared to the simple target-2LS emission (blue line). Panel (k) shows how the dressed
states now fully formed contribute to the emission with enough energy splitting and weight
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of the corresponding transition to produce a noticeable feature in the total emission spectrum
(dotted black). However, negative contributions balance these peaks and the resulting emission
spectrum only exhibits two “bumps” on its flanks. The target is resilient to developing a Mollow
triplet, although its dressing is now unambiguous as observable directly in the luminescence.
Panel (l) shows the quenching of the Mollow triplet at higher intensity of the source: the lateral
peaks vanish and the remaining splitted energies lie close to the bare state, resulting in an
emission spectrum with a single, heavily-tailed, line.

Panels (d-f) and (g-i) of Fig. 6.5 show the energy spectrum of the target 2LS for �⇠_�� = 1 and
�⇠_�� = 10, respectively. Although most of the features of the energy spectrum of the target 2LS
remain when we increase its decay rate, a notable feature is observed when �⇠_�� = 1: there
appears in this case dressed states that are split in energy at all driving intensities, as seen in
Fig. 6.5(e) for ⌦�_�� < 10

*1 through the asymptotic lines instead of the usual bifurcations. While
the weights also vanish with decreasing driving intensity, they are never exactly zero and the
structure of the dressed states is peculiar as they manifest including at vanishing driving field
intensity. This is another manifestation of a behaviour first observed by Laussy, del Valle, and
Finley (2012), in which equal decay rates in coupled quantum-optical systems lead to optimum
strong-coupling conditions. In this case, such a behaviour opens a channel of excitation where
the target 2LS can benefit from the strong-coupling of the source 2LS (that is in strong-coupling
from the strong classical driving field) regardless of its driving intensity. The information of
strong-coupling is therefore “encoded” in the photons emitted by the source and “restored” in
the target. If the target and sources are different objects (due to mismatched decay rates), this
information is lost.

Spectral decomposition
(j)

(k)

(l)

Positive Energy Spectrum
(a)

(d)

(g)

(b)

(e)

(h)

Negative Energy Spectrum
(c)

(f)

(i)

Total Energy Spectrum

Figure 6.5: Excitation by a Mollow triplet. (a-i) Energy spectra of the target 2LS. The energies that contribute
to the total emission spectrum with positive lorentzians are shown in blue, whereas those that contribute
with negative lorentzians are shown in red. (j-l) Emission spectra of the target 2LS (dashed, black lines) for
the values ⌦�_�� marked by the vertical dashed lines in Panel (c). The total emission spectrum is made of
the sum of positive (blue lines) and negative (red lines) lorentzians. To compute the figures we set �� as
the unit, and set �⇠_�� = 0.1 in Panels (a-c), �⇠_�� = 1 in Panels (d-f), and �⇠_�� = 10 in Panels (g-i).



i
i

“EwQL” — 2019/10/28 — 2:05 — page 115 — #69 i
i

i
i

i
i

6.4 mollow dressing 115

6.4.6 Excitation by an incoherently driven cavity

v
In this and the following Section, we change the source of excitation for a driven cavity. Here,

we discuss the case of an incoherently driven cavity. The system is described by Eq. (1.28)
when replacing the parameters of the source (operators and associated variables), marked with
the subindex �, by those corresponding to a cavity, which we note with the subindex a (the
operator a is a boson annihilation operator). The incoherent driving of the cavity is described by
the lindblad term (Pa_2)La†⇢ in the master equation. In contrast to the previous three Sections,
the Hilbert space of the system is now infinite. To compute the energy spectrum, we need to
truncate in the number of excitations. This is a difficult constrain for an incoherently driven
cavity since its population na = Pa_(�a * Pa) has thermal fluctuations. For this reason the energy
spectra showed in Fig. 6.6 are computed up to Pa_�a ˘ 0.968, with corresponding populations
na = 30 for which we have checked convergence of the results. Panels (a-c) display the case
with �⇠_�a = 0.1 and show that the energy spectrum is qualitatively similar to a 2LS driven
by a classical laser (cf. Fig. 6.2(a)). The most notable features of this result are the following:
first, weighting the transitions in a truncated Hilbert space is mandatory to reach convergence,
as Dp alone do not yield a stable structure otherwise as not only the number of eigenvalues
grows with the size of truncation, but their distribution also fails to settle to a consistent pattern.
Second, the weighted complex energy spectrum, shown in Fig. 6.6, that is well-defined and for
which we have checked convergence, reduces to a simple structure in the spectral shape but still
exhibits some unexpected features, namely, up to three satellite energies visible on each flank
of the central Lorentzian, as compared to the single line of the conventional Mollow triplet
(cf. Fig. 6.2(a)). The system fluctuates so much that it cannot accommodate all the transitions
with three energies only, but requires seven instead. Third, while the weighted structure is
indeed similar to the classical excitation, the intensity of the satellite peaks is much smaller
in comparison, so that the total emission spectrum is barely affected by them and is given
essentially by a single lorentzian at the energy of the target 2LS, as shown in Fig. 6.6(g-h) for

Spectral Decomposition

(a) (b) (c)

(d) (e) (f)

(g)

(h)

Positive Energy Spectrum Negative Energy Spectrum Total Energy Spectrum

Figure 6.6: Excitation by an incoherently driven cavity. (a-f) Energy spectra of the target 2LS. The energies
that contribute to the total emission spectrum with positive lorentzians are shown in blue, whereas
those that contribute with negative lorentzians are shown in red. (g-h) Emission spectra of the target
2LS (dashed, black lines) for the values Pa_�� marked by the vertical dashed lines in Panel (c). The total
emission spectrum is made of the sum of positive (blue lines) and negative (red lines) lorentzians. To
compute the figures we set �a as the unit, and set �⇠_�a = 0.1 in Panels (a-c), and �⇠_�a = 1 in Panels (d-f).
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the values Pa_�a marked by the vertical dashed lines in Fig. 6.6(c). The excitation of a 2LS by
thermal light is therefore largely a case of fundamental interest that, for most purposes, can be
approximated to an incoherently excited 2LS, despite this configuration yields a dressing of the
target. Fourth, as in the previous case, setting the decay rate of the target 2LS equal to the decay
rate of the cavity leads to energy-splitting at all values of pumping, while a mismatch leads
to a bifurcation instead, as shown in Fig. 6.6(d-f). In summary for this configuration, there is
little physics in the main observable, but much to be learned on the mechanisms of quantum
excitation from a (quantized) thermal source.

6.4.7 Excitation by a coherently driven cavity

In this Section, we describe the energy splitting of a 2LS driven by the emission of a coherently
driven cavity. The system is described by Eq. (1.30) with the changes of the previous Section,
but now we use two input channels for the source with ✏

1
= ✏

2
= 1_2, we replace the incoherent

pumping of the source by Ha = *i
˘

✏
1
�aE(a† * a), and set the effective driving intensity of

the source as ⌦a =
˘

✏
1
�aE . This creates a coherent state Û

Û

2⌦a_�aÎ that is dynamically coupled
to the 2LS. The dimension of the Hilbert space is also infinite and must be truncated. In this
case, however, Poissonian fluctuation of the cavity make the truncation manageable up to large
populations.

The energy spectrum of the target 2LS are shown in Fig. 6.7(a-c) for �⇠_�a = 0.1, and in
Fig. 6.7(d-f) for �⇠_�a = 1. The notable features here are direct counterparts of the incoherent
excitation case: First, the weighted energy spectrum now fully reduces to the level of complexity
of the conventional Mollow triplet, with exactly three resonances. Here it must be borne in mind
that the underlying structure is that of a fully quantized 2LS-cavity system, with countably
infinite complex eigenvalues (that fail to provide a converged structure if unweighted). In the
Hamiltonian regime, del Valle and Laussy (2011) showed that the corresponding structure is
extremely complicated and this is the cascaded feature (of no feedback from the target to its

Spectral Decomposition
(a) (b) (c) (g)

(d) (e) (f) (h)

Positive Energy Spectrum Negative Energy Spectrum Total Energy Spectrum

Figure 6.7: Excitation by a coherently driven cavity. (a-f) Energy spectra of the target 2LS. The energies that
contribute to the total emission spectrum with positive lorentzians are shown in blue, whereas those that
contribute with negative lorentzians are shown in red. (g-h) Emission spectra of the target 2LS (dashed,
black lines) for the values ⌦a_�� marked by the vertical dashed lines in Panel (c). The total emission
spectrum is made of the sum of positive (blue lines) and negative (red lines) lorentzians. To compute the
figures we set �a as the unit, and set �⇠_�a = 0.1 in Panels (a-c), and �⇠_�a = 1 in Panels (d-f).
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source) that brings such a simplification with an actual triplet structure down to the most
fundamental level. This is not exactly the conventional Mollow case, however, since there is one
additional parameter, the decay rate of the cavity �a, that cannot be zero as otherwise no photons
are emitted by the source. This causes some differences between these two configurations: the
c-field on the one-hand and the coherent-state cavity on the other. Figure 6.7 shows two cases for
the later with different �⇠_�a. Interestingly, in this case, the configuration �a = �⇠ does not lead
to an asymptotic loss of the splitting but to a bifurcation. This splitting from a single-line always
occur before that of the conventional Mollow triplet. The energy spectra remain qualitatively
very similar to that of the c-field driving (cf. Fig. 6.2). The agreement is recovered at large
drivings where a mean-field approximation, that replaces the cavity operator a by

˘

na in
Eq. (1.28), converges to the numerical solution. This approximation leads to the master equation
of a 2LS driven by a laser with intensity ⌦< =

˘

(1* ✏
1
)�⇠�ana =

˘

�⇠�ana_2 so the agreement at
large ⌦� (where na is very large too) appears to be exact. The mean-field approximation does
not hold however for small values of ⌦�_�a and therefore fails to predict the splitting threshold.
In this case, strong correlations between the 2LS and the few photons from the quantized
driving field (albeit in a coherent state) exist that lead to differences from the c-field driving.
We will come back to their importance in Section 6.5, where we turn to applied considerations
of this physics.

6.4.8 Excitation by a one-atom laser

In this Section, we consider an actual laser as the source for the 2LS. Namely, we drive the
2LS with the coherent state generated by a device that creates this coherence from its internal
dynamics, without inheriting it from another classical source (e.g., another laser, a classical field,
etc.) This is the culminating point of our description of the Mollow physics in this Chapter,
as there is nowhere a classical approximation that results in unphysical and/or pathological
results, like the ones that González-Tudela et al. (2013) have shown can occur from the � peak of
the laser. There have been several efforts to go beyond the Mollow paradigm where the driving
light is a perfect sine wave, for instance Zoller (1978a), Zoller (1978b), and Zoller and Ehlotzky
(1978)’s earliest work (which was the topic of Zoller’s Ph. D thesis), where the sought features
of the driving field are enforced into the model. Here, in line with the cascaded formalism
philosophy, we leave to the source to self-consistently develop and establish its lasing properties.

The simplest such laser is the one-atom laser, which was brought by Mu and Savage (1992)
and has been observed by, e.g., McKeever et al. (2003), Nomura et al. (2010), and Gericke et al.
(2017). This laser is based on the strong coupling between a 2LS and a cavity, in which the
incoherent pumping of the 2LS is turned into a coherent state of the cavity. Its Hamiltonian is
that of Jaynes and Cummings (1963):

Hs = !��†� +!aa†a+ g(a†� + �†a) , (6.25)

where, as before, � is the fermionic operator describing the atom and a is the bosonic operator
describing the cavity, with respective free energies !� and !a. Now, however, they are coupled
reversibly with strength g. The incoherent driving of the atom (P�), the decay processes and the
cascaded coupling between the cavity and the target 2LS are included in the master equation:

)t⇢ = i[⇢,Hs +H⇠] +
P�
2
L�†⇢+

˘

�a�⇠
�

[a⇢, ⇠†] + [⇠, ⇢a†]
�

+

…

k={�,a,⇠}

�k
2
Lk⇢ . (6.26)

Here, �� , �a and �⇠ are the decay rates of the atom inside the cavity, the cavity, and the target
2LS, respectively; and since there is no external coherent field driving the system we consider
only one input channel for the source and for the target. In Fig. 6.8 we show the normalised
emission spectra of a 2LS cascaded by a one atom laser (solid lines), and we compare it to the
normalised emission spectra of a 2LS driven by a classical laser (dashed lines). In the bottom
three lines of Fig. 6.8, the incoherent driving of the atom is so small that the one atom laser is
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Figure 6.8: Dressing of the target 2LS with a one atom laser. I compare the normalised emission spectra
of the a 2LS driven by the emission of a one atom laser (solid color lines) with the normalised emission
spectra of a 2LS driven coherently by a classical laser (dashed black lines). The incoherent driving of the
one atom laser increases towards the upper right corner of the figure, and makes the emission spectra
of the target 2LS to change from a filter of the emission of the cavity, as is clear from the lateral peaks
due to the strong coupling between the cavity and the atom inside, to the splitting of the emission line
until it reaches a triplet shape equivalent to that of a coherently driven 2LS. To compute the figures we set
the atom, the cavity and the target 2LS in resonance, and the rest of the parameters were as follows: �⇠
was set as the unit, ��_�⇠ = 10

*2, �a_�⇠ = 1, g_�⇠ = 10. The incoherent driving rate P� is different for each
spectrum, for the spectrum at the bottom we took the limit P�_�⇠ ô 0. For the next seven lines I used the
P� such that ⌦_�⇠ =

˘�a�⇠na_�⇠ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5. The last spectrum, at the top right of
the figure, was obtained for a cavity with �a_�⇠ = 0.1 and P�_�⇠ = 20.115, so that the population in the
cavity was 100 photons. The inset shows a zoom on this last spectrum very close to the resonance of the
target 2LS, to show the Rayleigh peak due to the driving by a laser.

not in the lasing regime. Therefore, the comparison of the spectra is made so that the population
in the target 2LS and in the coherently driven 2LS are the same. In all the other cases, when the
one atom laser is in the lasing regime, the comparison of the spectra is made so that the driving
intensity is the same, i.e., we compare the spectra of the target 2LS with that of a 2LS driven
coherently with intensity ⌦< =

˘�⇠�ana, where na is the population of the cavity. Figure 6.8
shows neatly the splitting of the energy levels of the target 2LS as a function of the rate of
incoherent driving of the atom inside the cavity. At the lowest P� , the spectrum of the target
2LS is the one at the left bottom part of the figure. There we see clearly that the target 2LS is
acting as filter of the emission of the cavity: the central peak corresponds to the resonance of
the target 2LS, while the other two peaks reveal the Rabi doublet due to the strong coupling
between the cavity and the atom inside. As the incoherent driving of the atom increases, the
peaks corresponding to the Rabi doublet become less dominant, and the emission spectrum of
the target 2LS tends to merge into a broad single line. Increasing even further the incoherent
driving, the emission line of the target 2LS begins to split again, but in a different way than
the coherently driven 2LS: while the splitting of the target 2LS seems to be a doublet as e.g. in
the light green line, the spectrum of the coherently driven 2LS has clearly a triplet shape. At
large driving rates the emission of the target 2LS converges to that of the coherently driven
2LS. In fact, in the uppermost spectrum the cavity has 100 photons, its statistics is coherent
(that is Ía†a†aaÎ_n2a = 1), and the two spectra are exactly the same. In Fig. 6.9 we show a
density plot of the photoluminiscence spectrum of the target 2LS driven by all the sources of
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Classical Laser

Incoherent Cavity

Incoherent 2LS Coherent 2LS

One Atom Laser

(a) (b) (c)

(d) (e)

Figure 6.9: Photoluminescence spectra of the two-level system driven by all the sources studied in the
chapter: (a) A classical laser resulting in the conventional Mollow Triplet. (b) An incoherent 2LS providing
a single line that merely broadens. (c) A coherent 2LS providing a Mollow splitting but of weak intensity
and that vanishes with increasing driving intensity. (d) A Thermal cavity providing a single line whose
broadening is reminiscent of the Mollow structure. (e) A one-atom laser showing the transition from the
non-lasing regime of the driving source to the exact recovering of the conventional Mollow triplet. At low
driving, the target echoes the structure from a Jaynes-Cummings-like coupling with the source.

light that we have considered in this Section, and summarized in its caption. At the highest
intensity shown in Fig. 6.8 the triplet structure sits below a narrow line due to the photons that
are scattered by the two-level system rather than absorbed and later re-emitted. This peak is
evidence of the so-called Rayleigh scattering, and it is observed even when considering the
excitation of a two-level system with a classical laser (in fact, I have discussed this process in
details in Chapter 3. However, for the classical case, one assumes that the laser is perfectly
monochromatic and therefore the linewidth of this peak is exactly zero. In contrasts, the peak
that arises in this spectrum has the natural linewidth of the laser (which this time is physical,
and no approximation has been made to describe it), which is shown in the inset of Fig. 6.8.

6.5 cascaded single photon sources

6.5.1 Introduction

Cascading is a powerful concept that allows to achieve extremely high end values from a
moderate initial input, with such compelling examples as the domino effect, which Whitehead
(1983) has shown can amplify energy by over two billions in a basement, to Lindeman (1942)’s
trophic cascade that can lead to extinction of species. It acts in several key processes of various
areas of science, e.g., with chemical and nuclear reactions, as reported by Bodenstein (1913)
and Anderson, Fermi, and Szilard (1939), respectively. In optics, through stimulated emission,
Dicke (1954) show that it underpins basic phenomena such as supperradiance and Schawlow
and Townes (1958) did accordingly with lasing. With the advent of heterostructures, it became
possible to engineer more elaborate schemes to better control the chain reaction. A highlight is
the proposal by Kazarinov and Suris (1971) of energy staircases in a superlattice leading to the
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successive creations of an increasing number of photons by a single initial electron, a scheme
that Faist et al. (1994) realized a quarter of a century later under the name of a quantum cascade
laser. Recently, Liew et al. (2013) made another proposal with cascades between condensates
and extremely high correlations in the form of superbunching, which according to Liew et al.
(2016) occur as a result of the cascading.

6.5.2 Driving the cascaded SPS

In this Section, I propose the application of such a principle to quantum light, and with the
aim of increasing not the intensity of light but a quality dear to quantum engineers, namely,
antibunching. In the race to build always better sources, in particular in the semiconductor
community (cf. the work of Rau et al. (2014), Schlehahn et al. (2015), and Ding et al. (2016)),
where such devices would furthermore have a large economic and technological potential.
Kuhlmann et al. (2015) recently showed that the Fourier transform limit for single photon
emission and there is now much efforts to combine and enhance other features such as
brightness, efficiency and, of course, antibunching, as has been done, e.g. by Unsleber et al.
(2016), Somaschi et al. (2016), and Loredo et al. (2016). My proposal takes a new direction and
rather than improving the engineering and the implementation, I turn to a different mechanism
to increase the quality of SPS by magnitudes not accessible only with a better technology.
Namely, I propose to cascade the output of a chain of single photon sources (SPS), with effect
of a profound restructuring of their spectral emission, bringing the initial Lorentzian shape of a
single SPS to grow into a Student t lineshape of order 2k after k iterations of the cascade. I show
that such a spectral engineering that trims the fat Lorentzian tails is accountable for increased
antibunching. As the iterations converge towards a Normal distribution, this scheme allows to
engineer extremely antibunched single photon sources that could power quantum logic with the
repetition rates necessary for their successful operations at a large scale. In essence, my results
remove the constrain of spectral broadening associated to short lifetimes. Stated otherwise, it
achieves at the single-photon emission level what a laser does in the Schallow-Townes limit by
narrowing the line with increasing signal.

My proposal consists of an array of consecutive SPS, in which the first SPS is excited
externally while the rest of them are excited by the fluorescence of the previous SPS. I will
consider cascades of up to three emitters but the scheme can be continued indefinitely. The
underlying principle is that exciting with quantum light allows to access new regimes that
neither classical excitations nor reversible (Hamiltonian) coupling can provide. This is thanks to
the added degrees of freedom of quantum light on the one hand (such as reduced fluctuations)
and the one-way transfer of energy on the other hand that removes the effective decay implied
by strong-coupling oscillating the excitation back to its source.

Here more than in the other cases discussed so far, a fully-integrated approach might be
desirable to realize a device. The scheme consists in feeding the output field of the i-th system to
the input field of the (i+1)-th system, with no feedback. This could be achieved by unidirectional
couplers in the laboratory or, as already commented in Chapter 5, by using chiral waveguides
to assemble the whole architecture compactly on the same chip, as shown by Petersen, Volz,
and Rauschenbeutel (2014) and Coles et al. (2016). It could also be possible to use a highly
directional source of excitations, as Ma et al. (2015) did, or a direct photonic coupling following
the work of Meyer et al. (2015). A schematic representation is shown in Fig. 6.10(a) and reads as
follows: the first SPS is driven by an external pumping, and the emission of SPS1 is then sent to
SPS2, and so on and so forth as more stages of the cascaded are arranged. An array of N SPS
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Incoherent SPS Coherent SPS

(a)
Driving Driving Driving

Emission Emission Emission

(b)

(c)

(d)

(e)

Figure 6.10: Scheme of the cascaded single-photon sources. (a) A series of SPS is connected through a
cascaded architecture. In each step of the cascade a SPS is driven by the emission of the previous SPS.
(b–d) Emission spectra of the initial SPS (red, dotted), the first (green, dashed), and second (blue, solid)
cascade steps. In each step of the cascade, the emission line becomes narrower and more peaked around
the central frequency. Panels (b) and (c) were made with �⇠_�� = P�_�� = 1. Panel (d) shows the case
for the coherent excitation of all the SPS by the coherent field, whereas Panel (e) shows the case for the
excitation by only the emission of the quantum source, i.e., the excitation of the target is done through a
different channel than the one used to drive coherently the source.

with annihilation operators �i, Hamiltonian Hi, and decay rate �i can then be described by a
master equation in the form:

)t⇢ =
N
…

j=1

0

i[⇢,Hj] +
�j
2
Lcj ⇢*

˘

�j
⌧

Ec†j * E
<cj , ⇢

�

1

+

+

N
…

j=2

j*1
…

l=1

˘

�j�l
$

[cl⇢, c
†

j ] + [cj , ⇢c
†

l ]
%

+

Pc1
2

Lc†
1

⇢ , (6.27)

where E is the amplitude of the coherent field incident upon SPS1. The justification for this
master equation is given in the Appendices B.2 and B.3, and I have featured explicitly an
incoherent pumping of the first SPS at the rate Pc1 , that can be set to zero to consider the
effect of the coherent driving only. The antibunching of a two-level system is, ideally, exactly
zero. An actual experiment will detect two photons, even in absence of noise and extraneous
emitters, from the SPS itself. This is due to time uncertainty that can bring together two photons
close enough in time to exhibit photon bunching. For some fixed time unit set by the detector,
the larger the emission rate, the more likely are such spurious coincidences. In the frequency
space, this is linked to tail events that are not detected, for instance because the detector’s
bandwidth � is finite. Accordingly, the theory of frequency-resolved correlation of del Valle
et al. (2012) predicts that while detecting all photons at all frequencies, � ô ÿ, produces the
ideal g(2)ÿ (⌧ = 0) = 0, failure to do so results in bunching. The fastest is the source, the broader
is the spectrum and the more difficult it becomes to collect all the photons. Crucially, the
spectrum is a Lorentzian and consequently has fat tails. This means that outliers are frequent,
unlike a Normal distribution where they are exponentially suppressed until they become safely
completely negligible. A fat-tail distribution can never safely exclude all its outliers, regardless
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Incoherent SPS

Coherent SPS

1st Incoherent Cascade

2nd Incoherent Cascade

2nd Coherent Cascade

1st Coherent Cascade

Counts per unit time

Figure 6.11: Improvement in the g(2)
�

due to the cascaded scheme. Once we fixed the linewidth of the
first SPS, the degree of freedom of the second SPS spans a new accessible region shown by the colour
shading. The antibunching provided by a incoherent SPS is enhanced by the cascaded scheme, but for
a wide range of parameter it is overcome by the antibunching provided by the coherent SPS. However,
by allowing all the SPS in the cascade to be driven by a coherent field, a destructive interference sets a
limits the enhancement of the g(2)

�
at the first step. The enhancement on the second cascaded is obtained

by driving the cascade with only the emission of the coherent SPS. In the axis, �� has the dimension of
inverse time and its numerical value sets the unit.

of the filters bandwidth. There would therefore appear to be an intrinsic limitation between
emission rate and photon antibunching. We now show how to thwart such a predicament by
trimming the fat tails. Figure 6.11 shows the combined emission rate and antibunching g(2)

�
for a

SPS that is excited either incoherently (solid red) or coherently (solid black) as pumping is varied
(dummy parameter on the curve). This figure is for a detector bandwidth � = 4�� . Increasing
�, one both betters the emission rate and antibunching, towards their ideal values of �� and 0,
respectively. However, this is a slow convergence that requires unpractical large filters at a
disadvantage with the fat Lorentzian tails. The exact functions of � and other parameters are
given by, in the case of incoherent pumping at rate P� :

I inc� = ��P�_
�

�� + P�
�

 

�_2
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S(!) d! , (6.28a)
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where Eq. (6.28b) is valid for I inc� f ��P�_
�
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�

. The coherent counterpart is given by:
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where we have used again the compact notation �kûnm = (n�+m��)k. From these results, and as is
apparent on Fig. 6.11, one sees that the coherent driving provides better antibunching than its
incoherent counterpart, with plateaus of

g(2),coh� = 2�2û01(9�
2

û10
+ 7�û01�û10 + �

2

û01
)_3�2û11�û21�û31 , (6.30)
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and g(2),inc� = 2�û01_�û31, which for � = 4�� reduce to 346_8775 ˘ 0.039 and 2_13 ˘ 0.154
respectively. The maximum emission rate, however, is smaller. This is due to stimulated
emission induced by the coherent driving that Rabi oscillates back the excited state to the
ground state and thus saturates the SPS to at most half its full occupancy. In contrast, the
incoherent driving can saturate the two-level system to its excited state and can thus emit
twice as much. The reason for a better antibunching of the coherent driving has already been
discussed above in relation to the Heitler effect. It is related to the spectral shape that trims its
fat tails by destructive interferences. In the case of the Mollow triplet, we have shown above that

it consists of three Lorentzians centered at ! = 0, and ! = ±

t

64⌦2

� * �2� as shown in Eq. (1.49).
In the limit of vanishing driving, the resulting lineshape thus concentrates its emission to the
central peak with a distribution of the type:

S(!) = 1

⇡
32��⌦2

�

(�2� +!2)2
, (6.31)

which is proportional to a Student’s t–distribution or order 3. The tails of this distribution
vanish faster than those of a Lorentzian distribution. A given frequency windows collects more
photons from the SPS and its antibunching is therefore more like that of the full spectrum, that
provides the exact zero.

We can extend this principle to cascaded systems, where the driving of the SPS is not from
an external classical laser (which, since it does not get feedback, can be seen as a particular
case of cascading) but from another 2LS. For the case of incoherent pumping, we observe a
similar behavior in the emission spectrum, as a difference of lorentzians leads to a distribution
with faster decaying tails. Namely, the emission spectrum of the first cascade reads at vanishing
pumping:
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, (6.32)

which is a Student t distribution of order 3. In the next stage in the cascade, the resulting
distribution is a Student t of order 5.

There is a trade-off between the antibunching and the intensity of the emission of the cascaded
single-photon source. The improvement of the value of g(2)

�
is maximum when all the SPS have

the same decay rate. In Fig. 6.11 I show the antibunching as a function of the emission rate of
the cascaded SPS at various steps of the cascade, and for both the coherent and the incoherent
driving. The coherent (solid, black line) and incoherent (solid, red line) are simply a SPS
driven by a classical field. In the first step of the cascade we obtain a large enhancement in
the antibunching: for a wide range of intensities, the antibunching for the first step in the
incoherent cascade (dotted, green line) matches the antibunching obtained with the coherent
SPS, which shows again how driving a system with a classical laser can be seen as cascade.
On the other hand, the antibunching for the first step in the coherent cascade (dashed, orange
line) shows a huge enhancement, which for a large range of intensities is even better that the
antibunching for the second step in the incoherent cascade (large-dashed, blue line). However,
the second step in the coherent cascade shows the same antibunching as the coherent SPS, thus
effectively reducing its antibunching. In fact, if all the SPS in the cascade have the same decay
rate, then all the even steps in the coherent cascade have the antibunching of the coherent SPS,
whereas the odd steps have the antibunching of the first step in the coherent cascade. Another
possible configuration for the coherent cascade provides a gain in the g(2) in the second step of
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the cascade. Namely, removing the coherent excitation from all the SPS except for the first one.
This is achieved in the same way as in Section 6.2, for which Eq. (6.27) is modified to:
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The coherent SPS provided by Eq. (6.33) has the same antibunching as the one provided by
Eq. (6.27), but requires a larger amplitude of the coherent field E as it is effectively reduced by a
factor

˘

✏. For a large range of values of the emission rate, the antibunching of the first step in
the cascade coincides with the values obtained with Eq. (6.27). However, only a fraction (1* ✏)
of the light emitted by the coherent SPS is transmitted to the cascade, and the emission rate of
the cascade is reduced by that factor. This is shown by the dashed, golden line in Fig. 6.11. The
antibunching for the second step in the cascade, as opposed to what is obtained with Eq. (6.27),
improves vastly as shown by the dashed, blue line in Fig. 6.11. Considering, e.g., a typical
lifetime of ⌧� = 1 ns for a self-assembled quantum dot, which transform-limit turns into a PL line
of �� = =_⌧� = 666 eV, that is, furthermore, power-broadened by pumping, one gets emission
rates of ten million counts per second with an antibunching of ˘ 3.5 ù 10

*3 in a frequency
window of 4�� with two cascades under incoherent pumping, and one order of magnitude better
antibunching with coherent pumping. The cascading can be iterated further and by turning
to shorter lived two-level emitters, since we have removed the spectral constrain of outliers
spoiling the antibunching, we can reach extremely bright antibunched single photon sources.
To appreciate these results, one can stress the saturated antibunching for the incoherent (red)
an coherent (black) uncascaded SPS while those in the cascades improve their antibunching,
albeit at the cost of diminished emission rates. This is because the first SPS sets the unit of time.
In fact, the envelope of the first cascade, in the units fixed by the first SPS, is the same as the
envelope of this first SPS . As a consequence, what one achieves already at the first case of the
cascade is to increase the decay rate of the SPS for a given value of the antibunching, thereby
achieving brighter single single photon sources. Next stages in the cascade further improve the
situation.

6.5.3 Comparison with the excitation of an harmonic oscillator

In the previous Chapter, I treated the excitation of an harmonic oscillator by a quantum source.
Such excitation allowed the harmonic oscillator to cover some area in the (na, g

(2)

a ) space, shown
in green in Fig. 6.12(a). Since this was some distance away from physical limit, a natural question
is whether other quantum sources could access more territory. I now show how, indeed, the
emission from a cascaded SPS indeed achieves that goal, although still far from yet touching
the boundary. In the case of driving the oscillator with cascaded SPS, the excitation is obtained
through Eq. (1.28). In this configuration, the accessible area expands to the orange region of
Fig. 6.12. Inspired by the positive results obtained using a second cascade to excite the harmonic
oscillator, one might think that further cascading the source could move the border of the
accessible states closer to the limit set by the Fock duo. However, covering all the possible values
for all the free parameters (driving intensity, decay rates and frequencies) grows exponentially
with the number of cascades in the hypothetical device. It remains an open question at the time
of writing whether further cascades, or for that matter another quantum source, can get closer
or even reach the frontier.
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Fock Duos
2nd Cascade

1st Cascade Figure 6.12: Getting closer to
the limit: adding a cascade step
to excite an harmonic oscillator
pushed the border of the acces-
sible states from the green (1st
Cascade) to the orange (2nd
Cascade) region. Adding more
steps to the cascade could take
the accessible region closer to
the Fock Duos limit.

6.6 conclusions

I have studied in detail several aspects as well as several configurations of the driving of a
two-level system (2LS) by quantum light (and classical light for comparison). I have shown that
the 2LS is “quantum-enough” not to benefit by itself from the excitation by quantum light as far
as the quantum state is concerned, since classical excitation can drive it in the same steady state.
However, when granted together with its source, with which it can enter in strong-coupling,
or when considering dynamical aspects of its emission, quantum driving of a SPS can result
in new regimes for its dynamics. This led us to a discussion of the meaning and definition
of strong-coupling between states in absence of feedback and, therefore, of oscillations. At a
fundamental level, I have meticulously discussed all the main possibilities to drive a 2PS with
various types of light, yielding a series of Mollow triplets that are summarized in Fig. 6.9. As
the most elaborate description, I have presented a full quantized model where the lasing is
self-consistently formed out of incoherent excitation through the one-atom lasing mechanism.
This allows to consider aspects such as the question of the optical phase and the nature of the
Rayleigh peak in absence of any c-number in the Hamiltonian. At an applied level, I have shown
how the quality of the reduction of multiple-photon emission (antibunching) can be understood
as linked to the spectral tails. I identified in this way why coherent pumping (resonance
fluorescence) overtakes its incoherent counterpart and discussed the counter-intuitive Heitler
effect of antibunched scattered photons off a laser. Namely, the coherent driving leads, in the
weak-coupling of the Mollow triplet, to interferences that turn the luminescence line into a
Student-t distribution with weaker fat tails than the Lorentzian profile of spontaneous emission.
This allows to collect more easily all the signal that, when taken in its entirety, contrives to result
in a single emitted photon by destructive interferences of the possible emissions. I have shown
how a similar and even further trimming of fat tails can be achieved by cascading SPS with the
effect of yielding increasingly antibunched emitters with decreasing tails, ultimately converging
towards a normal distribution (with no outliers), making it realistic to thus design perfect single
photon sources, i.e., that yield exactly zero coincidence and perfect antibunching, g(2) = 0, by
considering, say, the emission in five standard deviations of the cascaded SPS with enough
stages to approach a Gaussian. This would provide one spurious coincidence in 3.5 millions
repetitions, making any departure from exactly zero to any other factor in the experiment than
the source itself. These results should stimulate experiments on new approaches to design
better single photon sources.
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E X C I TAT I O N O F P O L A R I T O N S

No, no! The adventures first, explanations take such a dreadful time.

— Lewis Carroll
Alice’s Adventures in Wonderland

& Through the Looking-Glass

7.1 introduction

The previous two chapters were devoted to the excitation with quantum light of the most
fundamental targets: a boson and a fermion. In this Chapter, I upgrade the target of the excitation
to a quantum superposition of two bosonic particles, of which one is weakly interacting. Exciton-
polaritons—from here on simply polaritons—are the archetype of such a class of superposition,
arising from the strong coupling between a photon and an exciton in a quantum well. While
their full 2D structure can be described microscopically—in which case we have to invoke the
many electronic modes involved in the excitons and their coupling to the photonic field, as
discussed in Section 7.2.2—for this first part of the discussion we will follow the work of Verger,
Ciuti, and Carusotto (2006) which captures the microscopic description in a simple model, in
which a couple of harmonic oscillators are strongly coupled, and one of them has a Kerr-like
nonlinearity. Namely, the Hamiltonian describing the polaritons is given by

Hp = !aa†a+!bb†b+ g(a†b+ b†a) +Ub†b†bb , (7.1)

where a and b are the annihilation operators for the photonic and excitonic field, with bare fre-
quencies !a and !b respectively. The coupling between them has a strength g and the interaction
between excitons (which arises from the Coulomb force) is given by U . The dissipative aspect
of polaritons is taken into account through a master equation as in Eq. (1.20), the spontaneous
decay of the photon and the exciton, given by �a and �b, respectively. In the strong coupling
regime, obtained when the coupling strength, g in Eq. (7.1), satisfies the relation g > �a * �b_4,
the system is not governed by the bare states anymore, and instead the dynamics is better
described through the dressed states. In the context of polaritons, these states are referred to as
the “lower” and “upper” polariton branches, which I have introduced and shown in Fig. 1.17,
and their energies are related to the energy, coupling strength and decay rates of the bare modes
as follows:

!LP_UP =
!a +!b

2
-

u

g2 *
⇠�a * �b

4

⇡2

. (7.2)

When driven classically with a laser, the response of the polaritons is as shown in Fig. 7.1.
The strong coupling makes the occupation of the photonic field go towards the frequencies of
the polariton branches, while leaving a dip of population at the frequency of the bare modes.
Figure 7.1(b) shows the second-order correlation functions, as defined in Eq. (1.33), of both the
photonic field (blue line) and the lower polariton (orange). In the correlations of the photonic
field one sees the evidence of both the conventional (at the frequencies of the polaritons) and
the unconventional photon blockade (close to the frequencies of the bare modes), which, for
polaritons, were first predicted theoretically by Verger, Ciuti, and Carusotto (2006) and Liew
and Savona (2010), respectively. These two blockade effects have been recently been measured
by Muñoz-Matutano et al. (2019) and Delteil et al. (2019) in the conventional version and
by Snijders et al. (2018) and Vaneph et al. (2018) in the unconventional one. However, the
experiments above had to be done in the regime in which the excitation is very small—as
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(a) (b)

Figure 7.1: Response of polaritons to coherent driving. (a) Mean occupation of the cavity na (blue), the
lower nLP (orange) and upper nUP (green) polariton branches as a function of the detuning between
the lower polariton branch and the driving laser. The strong coupling yields the suppression of the
occupation at the frequencies of the bare modes, while pushing it to the frequencies of the polariton
branches. (b) Second-order correlation function for the cavity (blue) and the lower polariton branch
(orange), displaying the conventional and unconventional photon blockade at the frequencies of the bare
modes and of the polaritons, respectively.

Messin et al. (2001) showed that stronger excitations lead to blueshift and bistability—and the
observed antibunching remains relatively small.

In this Chapter, I undertake a different approach to observe quantum behaviours from
polaritons. Instead of using classical excitation and expecting the quantumness to arise from
the interaction between excitons, I will inject it from outside, and study the subsequent internal
quantum dynamics. While I will consider the polaritons as the optical target throughout this
Chapter, I will consider the quantum light from two types of sources: the Mollow (1969) triplet,
introduced in Section 1.2.6, and entangled pairs of single photons

7.2 exciting with the mollow triplet

With the ever increasing availability of quantum emitters, the question of their effect on a target
is one of increasing theoretical interest. In the wake of Kira and Koch (2006)’s proposal for
quantum optical spectroscopy, it has been shown thoroughly by Kira et al. (2011), Carmele,
Knorr, and Richter (2009), and Aßmann and Bayer (2011) that the statistics of the light affects
strongly the response of a system. In our case, the excitation is the output from a two-level
system driven by a laser with an intensity such that the emission spectrum is a Mollow (1969)
triplet. This is described through the Hamiltonian H� given in Eq. (1.45). The target, on the
other hand, are polaritons described through the Hamiltonian Hp in Eq. (7.1) referring the
frequencies of the photon and the exciton to the frequency of the driving laser. Furthermore,
the dissipation of the two systems and the cascaded coupling from the 2LS to the photonic field
are given by the master equation (1.28), which in this context becomes

)t⇢ = i[⇢,H� +Hp] +
��
2
L� +

�a
2
La +

�b
2
Lb *

˘

���a
�

[�†, a⇢] + [⇢a†, �]
�

. (7.3)

7.2.1 Mollow Spectroscopy

We now turn to a specific application of the excitation with quantum light, tackling the excitation
of a system of interacting polaritons with the emission from a 2LS driven coherently in the
Mollow (1969) regime. In chapters 1 and 2 I have discussed how the photons from various
frequency windows of the Mollow triplet have different types of statistics, ranging from the
expected antibunching (stemming from the fermionic character of the 2LS) from the lateral
peaks, up to superbunching from the leapfrog processes (introduced in Chapter 2) that lead to
the emission of photon pairs, a higher-still photon-bundle„ which Sánchez Muñoz et al. (2014b)
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have shown violate Cauchy-Schwartz and Bell’s inequalities, passing through intermediate cases
in other frequency windows. Thus, we can use this rich variety of quantum light (from a single
source) to scan over the target to probe its response to all types of input: from antibunched
single-photons, to superbunched highly correlated photon-pairs. This gives rise to a new type
of spectroscopy based on photon correlations, to which I refer as “Mollow spectroscopy”.

The response of weakly interacting polaritons, described with a Hamiltonian as in Eq. (7.1), to
classical light shows that antibunching is extremely small and requires vanishing excitations, as
stronger excitations lead to blueshift and bistability. For this reason, unconventional polariton
blockade mechanisms are favored, although these still require small pumping. In contrast,
excitation with quantum light allows a strong response in statistics with small populations for
all ranges of excitation and values of the ratio U_�a. Figure 7.2(a) shows the lower polariton
population n

LP
(the dot-dashed yellow line) and its second order correlation function g(2)

LP
(the

blue line) as the quantum source is scanned over the lower polariton (LP) branch, at energy !
LP

as defined in Eq. (7.2). Both the population and the statistics of the Mollow triplet are transferred
to the polaritons, but with some deviations due to their interactions. These deviations are
particularly marked in the polariton statistics, even down to very small values of U_�a, as seen
in Fig. 7.2(b), where I plot the L2 norm g(2)U=0

* g(2)Uë0


2
, i.e., integrating over frequencies the

differences of photon statistics with and without nonlinearities. Variations of about one percent
are obtained for U_�a = 10

*2. For even lower values, this becomes a delicate measurement
but still one within reach of state-of-the-art experiments, such as the one conducted by Peiris
et al. (2015). The higher sensitivity of the nonlinearity in statistics than in population comes
from the strongly correlated character of the leapfrog photon pairs, which optimize the effect
of the interaction by consistently using the ideal number of photons (two) needed for it to
manifest. The tunability of statistics from the Mollow triplet allows us, in particular, to extract
the numerical value of the nonlinearity. This is achieved by measuring the change in photon
statistics with the frequency of excitation. The maximum of the bunching is obtained at the
frequencies of the two-photon leapfrogs, namely at the frequency halfway between the central
and the satellite peaks. Photon pairs closer to the satellites lose their bunching faster than
those closer to the central peak. Comparing the response of the system when going in these
two directions allows us to quantify small nonlinearities that are otherwise hidden within the
radiative broadening. Thanks to the symmetry of the Mollow triplet, such a comparison can
be conveniently implemented without the need for a calibration of the frequencies by using
directly both sides of the triplet, rather than both sides of the superbunching peak. One can
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Figure 7.2: Mollow spectroscopy of
weakly interacting polaritons. (a) Pop-
ulation (dot-dashed yellow line) and
photon-statistics (solid blue line) when
scanning the Mollow triplet onto the
lower polariton branch. (b) Magnitude of
the deviation from the non-interacting
polariton statistics as a function of
U_�a. (c) Hopfield coefficients �nm of
relative light (n)-matter (m) content, as a
function of detuning. (d) Mollow splitting
required for the measurement of !0 to
be ⌦� independent, allowing an absolute
measurement of U .
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simply sweep the Mollow line shape onto the target and record its photon statistics. From these
measurements, one then defines f for the autoconvolution of the correlation function

f (!) =
 

+ÿ

*ÿ

g(2)(!* ⌫)g(2)(⌫) d⌫ . (7.4)

The triangle inequality places the maximum of f (!) at the values !<
0

that minimizes the
asymmetry of g(2) around !*!

LP
. When the leapfrog processes are sufficiently well defined

(see below), we find that the shift is precisely given by the two-polariton interaction:

!<
0
= !

LP
+ 2U�2

02
, (7.5)

where �
02

is the two-polariton Hopfield coefficient for the state 02Î of two excitons and zero
photons. The closed-form expression of �

02
in terms of the detuning is too cumbersome to be

given here, but the values is straightforwardly obtained by diagonalization of the Hamiltonian
in Eq. (7.1) and, as shown in Fig. 7.2(c), it is in excellent approximation given by �2

01
. In the

case of an anharmonic oscillator with no exciton-photon structure, the shift would be directly
given by 2U . There is thus no dependence of the measurement of !<

0
on the population or other

dynamical variables and it is therefore absolute, unlike the blueshift from a classical driving that
requires knowledge of the effective laser intensity. This is not the only advantage that powers
Mollow spectroscopy. A strong pumping of polaritons lead to several complications that hinder
full or compelling information: Schmitt-Rink, Chemla, and Miller (1985) have shown the effects
of heating and phase space filling, Houdré et al. (1995) reported on the loss of strong coupling,
Ferrier et al. (2011) and Christmann et al. (2012) observed a contribution to the blueshift coming
from the population of the exciton reservoir, and Kartashov, Konotop, and Torner (2012) discuss
the effect of the exciton-photon fraction deviating from the Hopfield coefficients.

Since polariton interactions provide the foundation for nonlinear effects that constitute much
of the polariton literature, the question of their nature and magnitude could be regarded as
one of the most important open problems of the field (cf. the work of Rossbach et al. (2013),
Cilibrizzi et al. (2014), Sun et al. (2017), and Walker et al. (2017)). In contrast, the excitation of the
same system with the Mollow triplet is clean of all such complications of high densities. Since it
recourses to the minimum amount of polaritons required to poke the interaction (two), Mollow
spectroscopy acts as a “probe” in the ultimate sense of the term, with as little disturbance as
possible. For Eq. (7.5) to hold, the Mollow triplet must be such that leapfrog processes are not
mixed with other types of less correlated emission, leading to some departure from a shift
ruled wholly by the two-polariton interaction. Figure 7.2(d) shows the splitting required for
Eq. (7.5) to be accurate, namely, in the plateau when ⌦ g 3�a Even at low splitting, from power
dependence, once can estimate the nonlinearity. For large Mollow splittings, against the Rabi
splitting, there is a resonance in g(2) at ⌦_�a = 3g_2 when the lower leapfrog excites the lower
polariton branch, while the upper Mollow satellite excites the upper polariton branch.

7.2.2 Beyond the single-mode approximation of the polariton

In the previous section, I have reduced the problem of exciting polariton with quantum light,
to probing a single mode. While this describes a system on its own—a single anharmonic
oscillator—in principle, polaritons are made of continuous rather than discrete fields, and the
full Hamiltonian describing them features such fields:

H
P
=
 

Ç †
(x)

4

*
=2(2

2m
+U Ç †

(x) Ç (x)
5

Ç (x) dx , (7.6)

where Ç (x) is an operator (I have kept here explicitly the ˆ symbol to highlight that), an is a
function of the continuous variable x (assuming here a 1D case, where x À R, in 2D it would be
a function of r À R2). For simplicity, here we also consider the polariton field directly, without
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the underlying exciton-photon structure as is done in the main text. The corresponding master
equation including polariton lifetime reads:

)t⇢ = i[⇢,H
P
] +

�
2  

�

2 Ç (x)⇢ Ç †
(x)* Ç †

(x) Ç (x)⇢* ⇢ Ç †
(x) Ç (x)

�

dx , (7.7)

where � = (�a + �b)_2 at the bottom of the polariton branch. A convenient procedure at this
point is to turn to the reciprocal space, with the opportunity to introduce some details on the
space structure. Namely, the link between real and reciprocal space is made through the Fourier
transform, which yields a relation of the type:

Ç (x) =
…

k
Çak�k(x) , (7.8)

with Çak Bose operators satisfying [ Ça†k, Çaq] = �k,q (and zero in all other cases). The function �k(x)
translates the hypotheses one makes on the nature of space. For instance, if in free space, �k(x) =
eikx_

˘

L, in terms of a “quantization” length L that can be made to go to infinity and turn the
sum of reciprocal space into an integral. In this case, =k has the full meaning of a momentum.
Substituting Eq. (7.8) into Eq. (7.6) yields the k-space Hamiltonian (from here onward we drop
the ˆ notation):

H
P
=

…

kÀK

=2k2
2m

a†kak +
U
L

…

k1,k2,qÀK

a†k1+qa
†

k2*qak1ak2 , (7.9)

where the sum runs over K = {±n⇡_L ; n À N} (in 1D; in 2D, the sum would be over K2). This
is the Hamiltonian one should use to describe a continuous, weakly interacting polariton gas
(neglecting other ingredients such as coupling to phonon fields). Physically, this is achieved
by impinging the light from the two-level system at an angle on the microcavity. In this way,
one can apply the principle of Mollow spectroscopy along the dispersion, similarly to classical
spectroscopy.

An important point is that although the incoming light couples to one mode only, the mode
itself is coupled through the interaction U to other modes. I will consider here the case where the
quantum light impinges onto the ground state of the polariton dispersion, namely letting c

2
= a

0

in the master equation (1.28), for which the interaction part of the Hamiltonian (7.9) reduces to:

HqÀK =
U
L

H

…

qÀK

a†qa
†

*qa0a0 + h.c.+
…

qÀK<

a†qa
†

qaqaq +
…

qÀK<

a†qa
†

qaqa*q

I

, (7.10)

since the exciting light is on the vacuum of the system and states that are not populated get
decoupled from the dynamics (with K<

= K* {0}). Although the main coupling term a†qa
†

*qa0a0
does not conserve energy (two particles from the ground state are scattered to two excited states),
the term can still play a role in cases such as large occupancy of the modes (condensation),
coherent driving, etc. Also, the smaller is the energy gap, the larger is the relevance of such
terms, which is precisely our concern in the case of continuous fields, since some excited states
lie arbitrarily near the ground state. This term remains complicated to treat exactly. In the
previous section I have restricted the description to the case K = {0}, and now I justify the
validity of such an approximation and go beyond it by considering additional terms.

Figure 7.3 shows two cases of Eq. (7.9) as a function of the quantization length L. The energy
difference between the ground state polariton at k = 0 and the first excited polariton state
at k = ±⇡_L is �E = ⇡2=2_(2mL2

). For small enough L the discretization becomes meaningful,
as spacing between successive states becomes larger that the other energy scales. Assuming
that the first excited state dominates the dynamics of Eq. (7.10), one can describe the effect of
the continuous-field nature of polaritons by solving for the case:

H
P,±q = !q

⇠

a†qaq + a
†

*qa*q
⇡

+

+
U
L

⇠

a†
0
a†
0
a
0
a
0
+ a†qa

†

*qa0a0 + a
†

0
a†
0
aqa*q + a†qa

†

qaqaq + a
†

*qa
†

*qa*qa*q + a
†

qa
†

*qaqa*q
⇡

(7.11)
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Figure 7.3: Quantization of the lower polariton (LP) branch in 1D reciprocal space, for two sizes L of
“space”. The shadowed area shows the radiative broadening of the line and a brown dashed line shows
the interaction strength U . (a) quasi-continuum approximation with a plethora of modes, in particular in
between the ground state and the interaction line. (b) for small quantization areas, the first excited state
lies a sizable distance away allowing a few modes approximation. Further excited states can be neglected.

where q is now understood as ⇡_L, and !q = =2⇡2_(2mL2
) is the energy of the excited states,

with the ground state !a setting the zero of energy. Although this looks a strong simplification,
one must bear in mind that we are solving a full quantum system, including the dynamics of
the source. The total Hilbert space to describe the quantum excitation by resonance fluorescence
of Eq. (7.11) is H� ‰H

0
‰Hq ‰H

*q (here we are considering the Hilbert space of the 2LS,
the ground state of the polaritons and two excited states with momentum ±q) which—for a
truncation of the Bosonic spaces at five particles (which I have checked assures convergence)—
has dimension 2 ù (2

6
)
3
= 2

19, i.e, of magnitude half-a-million. There are dedicated methods
to efficiently address such problems numerically. Since I do not undertake a comprehensive
analysis of this case at this stage but merely wish to explore the boundaries of its validity, I also
studied (with more data points) a case with the further simplification:

H
P,q = !qa†qaq +

U
L

⇠

a†
0
a†
0
a
0
a
0
+ a†qa

†

qa0a0 + a
†

0
a†
0
aqaq + a†qa

†

qaqaq
⇡

, (7.12)

which has dimension 2
13 only, i.e., less than 10000, which can be readily computed on a desktop

computer. Results of both cases, Eq. (7.11) and (7.12), are shown in Fig. 7.4. The horizontal green
dashed line is the shift given by Eq. (7.5), i.e., assuming no perturbation from the excited states.
The solid blue line corresponds to the more realistic case, Eq. (7.11) and is interpolating between
12 data points. The dashed red line corresponds to the reduced Hilbert space approximated
version Eq. (7.12), and has enough data points that it can be assumed continuous from the
numerical calculation. Interestingly, the crudest version yields stronger deviations from the
single-mode approximation. In both cases, these results show that Mollow spectroscopy as
presented in the previous section remains accurate within a 10% error margin, and becomes
exact for energy splitting between the polariton ground state and its closest state is ¿ 10�a.
The figure also implies that the approximation is good again when the first excited state lies
close to the ground state. This is however not trustful since another excited state will then
lie at the energy of the resonance and take the place of the first excited state. At this stage of
the work, it remains an open question whether in such a case the dynamics will be given in
good approximation by the same effective reduced Hamiltonian, with all other excited states
(many between the ground and resonant excited state) playing a minor role as suggested
by this figure. While this is an appealing and, on physical grounds, likely scenario, I cannot
support that this is the case and a full investigation is called for. For the time being, I focus
on the region !q *!0

¿ 10�a. For the inverse lifetime of the polaritons of �a = 0.1 ps*1 that we
can assume for today’s sample, i.e., �a ˘ 66�eV, the energy difference required to justify the
single-mode approximation is thus �E Ì 0.6meV. For a typical GaAs cavity with a polariton
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Figure 7.4: Shift of the photon statistics !< due
to the first excited state in (a) two degenerate
excited states, Eq. (7.11) and (b) only one ex-
cited state. The green dashed line corresponds
to the single-mode approximation. At spacing
ten times the radiative lifetime, the effect of
excited states is negligible.

mass of the order of m = 5ù 10
*5me (me being the free electron mass), this means a quantization

size of the order:

L =

u

⇡2=2
2m�E

Ì 3.5�m . (7.13)

This size could be met experimentally by using laser spot of this dimension, assuming no drift
or diffusion of the polaritons in the sample. The resulting spread in k-space of the laser spot
is still small enough (1_L as compared to ⇡_L) to be neglected in the Hamiltonian. It could
also be filtered out in energy with a mask, or one could consider the coupling of the quantum
light to three modes, which would not change the algorithmic complexity of the problem.
Clearly, however, this brings the discussion to another regime, with the dependence of the shift
on the spot radius. If the laser spot size, that is achievable experimentally, would appear too
compelling, one can also enforce quantization directly on the sample, by etching a portion out
for characterization. This is the strategy of Verger, Ciuti, and Carusotto (2006) (considering
various geometries) to reach the regime of polariton blockade. In this case, assuming an infinite
square well potential of size L, one has �k(x) =

˘

2_L sin(k⇡x_L) for k À Z and the same
procedure now yields

H
E
=

…

kÀZ

⇡2

L2

=2k2
2m

a†kak +
3U
2L

…

kÀZ

a†ka
†

kakak +

+
U
L

…

q,kÀZ

a†ka
†

kaqaq +
U
2L

…

k1,k2,qëk2

a†k1+qa
†

k2*q
ak1ak2 . (7.14)

This Hamiltonian yields the same energy difference �E = ⇡2=2_(2mL2
) between the ground

state at k = 0 and its closes neighbour (note that in this case the summation is over Z, not K),
but enhances the values of the self-interaction of the polaritons by a factor of 1.5 and decreases
the scattering term by a factor 2. In addition of justifying the approximation of a single-mode,
this also makes it better, as the detrimental effect of scattering to the excited states is weaker.

As a conclusion, the trend of the impact of excited states is qualitatively clear: it produces
a small departure (at most 10%) from the single-mode approximation that I have used in
Section 7.2.1, which can be circumvented experimentally. More interestingly, however, such
deviations should not be regarded as detrimental but as opening new directions of applying
the technique. For instance, one can show that the dip in Fig. 7.4 is given precisely by the
scattering process, in the sense that without self-interaction, the shift in the photon statistics
of the pumped state is negative and accounts for the observed depletion in the numerical
computation. Therefore, once the full theoretical analysis of this wider problem is made, one
can hope to extend the method of Mollow spectroscopy to systems with closely excited states,
and certainly also to continuous fields, where methods of quantum field theory are however
called for to undertake such calculations. This is a topic for future works. For our purpose, it is
enough to conclude from this analysis that the principle of Mollow spectroscopy as given in
closed-form in the previous section can already be applied in the laboratory, to provide precise
information on the polariton interaction not reachable by conventional methods, and that an
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intense field of research lays open to tackle more complicated systems, not only regarding
vacuum of more complex geometries, but also probing their excited states.

7.3 exciting with entangled photons

The spectroscopic technique that I introduced in Section 7.2.1 requires to fine-tune the emission
of a 2LS with the absorption lines of the polariton systems. While in theory this is done in a
straightforward way, doing it in the laboratory is a challenging task, which cannot be done
with the state-of-the-art samples. However, there are other types of sources of Quantum Light
that can be readily interfaced with today’s polariton samples. In this section, I will discuss the
case of excitation of polaritons with single photons, and address two questions of paramount
relevance: can the polaritons display truly quantum behaviour? And are the interactions between
polaritons strong enough to modify their quantum state?

7.3.1 Experimental setup

The source of individual photons is a periodically poled KTP (PPKTP) crystal1 driven by a
continuous wave laser of wavelength � = 405 nm. Following the setup of Fedrizzi et al. (2007),
these photons impinge onto the PPKTP crystal, where they are downconverted to a pair of
entangled photons, with a bandwidth sufficiently narrow so that they can be coupled to our
microcavity (the description of which is given in Appendix C). The PPKTP crystal is introduced
inside a Sagnac interferometer (see the sketch in Fig. 7.5) which allows to create polarization
entangled photons in a state of the form

 Î =
1
˘

2

�

HVÎ+ ei' VHÎ
�

, (7.15)

where HÎ (VÎ) stands for a horizontally (vertically) polarized photon. The relative phase
between the two superposed states ' can be manipulated, by placing a liquid crystal in one of
the arms of the interferometer, to generate Bells states

Û

Û

 
±
⌘

=
1
˘

2

(HVÎ± VHÎ) . (7.16)

At the end of the interferometer, we have a pair of non-degenerate entangled photons travelling
in different directions and with different wavelengths: one—to which I will refer to as the idler—
matching the polariton resonance (� ˘ 830 nm) and the other—the signal—with the wavelength
required to conserve energy (� ˘ 790 nm). The idler photon is directed towards the microcavity,
where it excites a single polariton which is stored in the cavity until its spontaneous decay.
Then, the photon is retrieved and sent to a tomography stage, where it meets the signal photon
(which comes there straight from the interferometer).

The tomography stage is sketched in Fig. 7.5. It consists of a quarter waveplate (QWP)
followed by a half waveplate (HWP), a polarizing beamsplitter (PBS) and a single-photon
detector (APD). The coincidence counts from the two single-photon detectors are measured
in a 4 ns window with a home-made coincidence unit. By making such measurements for
all the combinations of polarizations on each detector (that makes 6 ù 6 possibilities for the
three polarization bases: circular, vertical and diagonal), we are able to determine whether the
idler—which transformed into a polariton and was later re-emitted as a photon—retained the
nonlocal quantum correlations of a Bell state, as suggested by James et al. (2001). If this were the
case, it would mean that the polariton state that inherited and later transmitted this information
was itself in a genuine one-particle quantum state, which was furthermore entangled with the

1 Potassium titanyl phosphate, or simply KTP, is a compound with chemical formula KTiOPO
4
, and it is a white solid

with nonlinear optical properties.
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Figure 7.5: Sketch of the behaviour inside the microcavity: (a) Linear regime: a single photon (yellow,
idler) gets into the microcavity where it becomes a polariton, that is later reconverted into an external
photon. When this photon is entangled with another one (green, signal), we show that the entanglement
is preserved throughout. (b) Interacting regime: a single photon (yellow, idler) enters the microcavity
along with photons from a classical laser (red). The polaritons in the microcavity interact. This affects the
entanglement of the single-polariton in a way that allows to measure the polariton-polariton interaction.
(c) Sketch of the Sagnac interferometric source. (d) Sketch of the setup implementing these configurations.

signal photon propagating on the other side of the setup. Namely, it would prove that we have
created the state

Û

Û

 
±
⌘

=
1
˘

2

⇠

a†
H
p†
V
± a†

V
p†
H

⇡

0Î , (7.17)

where p
H

and p
V

are the boson annihilation operators for the horizontally and vertically
polarized polaritons and a

H
and a

V
for the signal photon, respectively. While this could be well

expected from a standard linear theory of light propagating through resonant dielectrics, the
failures of polaritons to demonstrate other expected quantum correlations, such as in the OPO
(optical parametric oscillator) scattering, show that it is not obvious whether polaritons are
proper carriers of quantum features. In particular, their composite nature and large exciton
component could lead to fast decoherence (e.g., via phonon scattering). The spectral shape
of the idler state is shown in Fig. 7.6(a). Using single mode laser excitation of the PPKTP
crystal, the bandwidth of the entangled photon pairs is reduced to 0.46 nm, which is only
35% wider than the polariton state. Varying the temperature of the PPKTP crystal one can
modify the wavelengths of the downconverted photons from 825 nm to 831 nm. In order to
check that the entangled idler is indeed transferred into the polariton state and not merely
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Figure 7.6: (a) Green: normalized emis-
sion of the PPKTP crystal. Orange: nor-
malized transmission of the emission of
the PPKTP crystal through the LPB. (b)
Changes on the resonance as a function
of the temperature of the two-photon
source. I: 2D map of the emission of
the crystal outside of the microcavity. II:
transmitted intensity as a function of the
energy as the temperature varies. Two
peaks can be identified that correspond
to the resonances with one of the two
polariton branches. The color-bar corre-
sponds to both I & II. III: far field of the
emission under non-coherent pumping.

passing through the cavity mode—as they would while propagating through a slab of glass—we
performed transmission measurements while scanning the energy of the idler from below the
lower polariton branch (LPB) to above the upper polariton branch (UPB). In Fig. 7.6(b), the
effect of the microcavity on the idler state shows that no light is transmitted when the idler
is out-of-resonance with the polaritons. This means that every photon that passes through
the sample has been converted into a polariton. If this were not be the case, we would have
observed a finite signal at the energy of the cavity (which lies between the LPB and the UPB),
but it is completely absent even in logarithmic scale (not shown).

7.3.2 Entanglement and nonlocality

The tomography procedure outlined in the previous section, yields the state of the pair of
photons, even after one of them has been absorbed and later re-emitted by the microcavity. The
36 measurements in all the possible combinations of polarization allows us to reconstruct the
density matrix describing the state of the two photons. It then reads

⇢ í 1

K

`

r

r

r

r

r

p

HHHH HHVH HHHV HHVV

h.c. HVVH HVHV HVVV

h.c. h.c. VHHV VHVV

h.c. h.c. h.c. VVVV

a

s

s

s

s

s

q

, (7.18)

where K is a constant so that Tr(⇢) = 1 and, e.g., VHHV stands for:

Í  c†
V
q†
H
q
H
c
V
 Î , (7.19)

where  Î are the states seen by the pair of photons when one of them reaches the cavity. From
the density matrix in Eq. (7.18) we can quantify the degree of entanglement between the two
photons through the “concurrence”, a measure of entanglement proposed by Hill and Wootters
(1997), which is defined as

C[⇢] í max(0, �
1
* �

2
* �

3
* �

4
) (7.20)

where the �i are the eigenvalues in decreasing order of the matrix
t

˘

⇢ É⇢
˘

⇢, where we have
defined

É⇢ í (�y ‰ �y)⇢T (�y ‰ �y) , (7.21)
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Photon-photon entanglement Photon-polariton entanglement(a) (b)

Figure 7.7: Tomography measured between the signal and idler photons. The signal is sent directly
towards the detector while the idler photon becomes a polariton when entering the sample. (a) Real
(left) and imaginary (right) components of the density matrix for the source of photon-pairs without the
sample. The concurrence is not one because the operation wavelength is not optimal for the source. (b)
Real (left) and imaginary (right) components of the density matrix when passing through the microcavity.
The concurrence of 0.806 shows that polaritons retain the entanglement.

and �y is a Pauli spin matrix. The concurrence is a monotonous quantity ranging from zero for
classically correlated or uncorrelated states and approaching one as the quantum entanglement
increases.

To study the transfer of the entanglement into the polariton field, I compare the entanglement
of the pair of photons in two configurations:

• when the photons are measured immediately after being emitted, thus guaranteeing to be
as entangled as they get, and

• when one of the two photons passes through the cavity, becomes a polariton, and is later
re-emitted as a photon.

Figure 7.7 shows the density matrices and the computed concurrence for the two cases. Panel (a)
shows the photon-photon entanglement, which is topped at 0.826 (it is not exactly one because
the entangled state is not optimized at the operation at the wavelength to interface with the
cavity). Panel (b) shows that, although one of the photons has gone through the cavity, the
quantum entanglement has only reduced marginally to 0.806. This result is a direct proof that
was generated experimentally a single polariton within the microcavity and that it existed there
as a quantum state with no classical counterpart. If the single photon had been lost in the
polariton thermal noise or coupled to a collection of other polariton states, no entanglement
would have been observed. This transfer of the photon to and from a polariton state has shown
to conserve almost entirely the original degree of entanglement. This is an encouraging result
for a future exploitation of quantum polaritonics.

Beyond the preservation of concurrence, we also demonstrated the nonlocality between
the signal photon and the polariton created by the idler photon. We did so by probing the
classical Clauser et al. (1969)—also known as the CHSH—inequality S f 2 where:

S = E(a, b)*E(a, b®) +E(a®, b) +E(a®, b®) , (7.22)

and
E(x, y) =

C
++

(x, y) +C
**

(x, y)*C
+*

(x, y)*C
*+

(x, y)
C
++

(x, y) +C
**

(x, y) +C
+*

(x, y) +C
*+

(x, y)
, (7.23)

is a function of the coincident counts Cpq(x, y) between the two measurement ports of our
tomography setup, for the photons with polarization p, q À {*,+} in the bases x = a, a® and
y = b, b® where a = *⇡_8, a® = ⇡_8, b = 0 and b® = ⇡_4 are the combinations of polarization
angles that maximize the Bell’s inequality violation. This can be obtained by rotating the
tomography HWPs in a_2, a®_2, b_2 and b®_2. Figure 7.8 displays the measured Bell curves,
which show the photon coincidences associated to these bipartite polarization measurements,
along with the continuous correlated oscillations predicted by the theory. In the optimum
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Figure 7.8: Coincidences as a function of the polarization between the external photons and the polaritons.
Left: Bell curves for a polarization angle b = 0. Right: Bell curves for b = *⇡_4. Red squares and blue
circles denote the ++ and +* coincidences, respectively.

configuration, we obtain a value of S = (2.463 ± 0.007) which unambiguously violates the
CHSH inequality and proves the nonlocal character of the photon-polariton system.

The experimental results shown above demonstrate clearly that, although polaritons are quasi-
particles in a solid-state system with complex and yet-to-be-fully-characterized interactions with
their matrix and other polaritons, as reviewed by Deveaud (2016), they can be used as quantum
bits maintaining almost unvaried their quantum state and can transfer it back and forth to an
external photon. In particular, this shows that several effects, such as pure dephasing, coupling
to phonons, radiative lifetime, etc., are not detrimental to quantum coherence.

7.3.3 Nonlinearity at the single polariton level

Now that I have demonstrated that one can inject quantum states in a polariton system, and that
polaritons are able to maintain and transfer quantum information, I will address the question
of whether the quantum state of polaritons can be affected and ultimately controlled. Thus, we
need to go into the nonlinear regime and study the effect of polariton interactions. To observe
such nonlinearities within our available equipment, we repeated the experiment with the cavity
in a non polariton-vacuum configuration: instead of exciting the sample only with a single
photon coming from the PPKTP crystal, we add the excitation from a classical laser, which is
the most common way to drive a microcavity (cf. Fig. 7.5). The driving from the laser induces
a macroscopic (and classical) state of the polaritons inside the microcavity, which we want to
use to modify the state of the entangled photon. Since the polaritons from the classical state
and the single polariton need to be distinguishable, they are put in the cavity with different
wavevectors (which in practice means that they are shone onto the sample at different angles).
Moreover, to avoid the effects of relaxation from the classical state to lower energy states, we
sent the laser in resonance to the lower polariton branch, while the entangled photons is sent in
resonance to the upper polariton branch. Note, however, that polariton-phonon interaction and
Auger processes, although minimized at low temperature and low power of excitation, cannot
be completely avoided.

The Hamiltonian governing the dynamics of the polaritons within the microcavity has been
written by Kavokin et al. (2017), where the description is made directly from the photonic and
excitonic modes present in the sample. This Hamiltonian reads

H = H
0
+H

shif t
+H

scat
, (7.24)
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where the components are defined as

H
0
=

…

k,�=~,ö
!a,k a

†

�,ka�,k +!b,k b
†

�,kb�,k + gk(a
†

�,kb�,k + b
†

�,ka�,k) , (7.25a)

H
shif t

=

…

k,�=~,ö
V (1)

k,k,0 b
†

�,kb
†

�,kb�,kb�,k + V
(2)

k,k,0 b
†

�,kb
†

�,kb*�,kb*�,k , (7.25b)

H
scat

=

…

k,k®ëk
�=~,ö

V (1)

k,k®,0 b
†

�,kb
†

�,k®b�,kb�,k® + V
(2)

k,k®,0 b
†
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†

*�,k®b�,kb*�,k® +

+
1

4

…

k,k®ëk
�=~,ö

exp(i�k,k®,�kt)
�

V (1)

k,k®,�k b
†

�,k+�kb
†

�,k®*�kb�,kb�,k® +

+ 2V (2)

k,k®,�k b
†

�,k+�kb
†

*�,k®*�kb�,kb*�,k® + h.c.
�

, (7.25c)

where a�,k (b�,k) is the annihilation operator of the photon (exciton) with polarization �,
momentum k, energy !a,k (!b,k) and �k,k®,�k = (E(k) +E(k®)*E(k+ �k)*E(k® * �k))_=.
Here H

0
describes the linear coupling between photons and excitons, which occurs when the two

particles have the same polarization and the same momentum. H
shif t

describes the interactions
between excitons with the same momentum but possibly different polarizations, and H

scat

describes the scattering between excitons with different momenta. The matrix elements V (1)

k,k®,�k
and V (2)

k,k®,�k describe the scattering of two polaritons in the triplet and the singlet configurations,
respectively. The experimental evidence allows us to reduce the number of terms that play a
role in the dynamics of an ideal system, namely

(a) The lower polariton branch is completely empty, except at the wavevector k = k0 where
the laser creates a polariton condensate. Here we assume that the condensate is in a
coherent state which allows us to do a mean field approximation replacing the operators
of the lower polariton branch for complex numbers.

(b) The upper polariton branch is empty, except for the single photon that enters at k = 0.
This means that the nonlinear terms of the Hamiltonian for the upper polariton branch
always evaluate to zero.

The latter condition implies that Eq. (7.25b) does not contribute to the dynamics, and that
Eq. (7.25c) reduces to

H
scat

= 3V (1)
(b†

~,0b~,0b
†

~,k0
b~,k0 + b

†

ö,0bö,0b
†

ö,k0
bö,k0 ) + 2V (2)b†

ö,0bö,0b
†

~,k0
b~,k0 +

+ 2V (2)b†
~,0b~,0b

†

ö,k0
bö,k0 + V

(2)
(b†

~,0bö,0 + b
†

ö,0b~,0)(b
†

~,k0
bö,k0 + b

†

ö,k0
b~,k0 ) , (7.26)

where I have assumed that the interaction energies do not depend on the wavevectors. The
lower and upper polaritons are related to the photon and exciton through the transformation,

a�,k = cos ✓k q�,k + sin ✓k p�,k and b�,k = sin ✓k q�,k * cos ✓k p�,k , (7.27)

where p�,k and q�,k are the annihilation operators of the lower and upper polaritons, respectively;
and � is the polarization of the particles. Since the dispersion relation of the photon and of
the exciton do not have the same curvature (cf. Fig 1.17), their contribution to the lower and
upper polariton is different at each k. This variation is taken into account through the Hopfield
coefficient,

sin ✓k =

y

x

x

w

⇠2k
1 + ⇠2k

with ⇠k =

(!b,k *!a,k) +
t

4g2k + (!b,k *!a,k)2

2gk
. (7.28)
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In the lower and upper polariton basis, the Hamiltonian in Eq. (7.25a) becomes

H
0
=

…

k,�=~,ö
q†�,kq�,k

�

!b,k sin
2 ✓k +!a,k cos2 ✓k + gk cos ✓k sin ✓k

�

+

+ p†�,kp�,k
�

!b,k cos2 ✓k +!a,k sin
2 ✓k * gk cos ✓k sin ✓k

�

, (7.29)

whereas Eq. (7.26) becomes,

H
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= 3V (1)
(q†
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†

ö,0q~,0)(p
†

~,k0
pö,k0 + p

†

ö,k0
p~,k0 ) cos

2 ✓k0 sin
2 ✓0 , (7.30)

where I have taken into account that at k = k0, only the lower polariton branch is populated,
whereas at k = 0 only the upper polariton branch is populated. Resorting again to the fact
that the condensate in the lower polariton branch is in a coherent state, the operators for the
lower polariton at any given wavevectors can be replaced by the square root of the population
at such wavevector, namely p�,k =

˘

n��k,k0 , where n� is the mean number of particles with
polarization � in the lower polariton branch at k = k0, and � is the Kronecker delta. At last, we
include a spin-orbit coupling term that enters into the Hamiltonian as an effective magnetic field
that couples polaritons with the same momenta but opposite spins as introduced by Kavokin
et al. (2017):

H
so
= g

so
(q†

~,0qö,0 + q
†

ö,0q~,0) . (7.31)

The magnitude of the coupling is given by the imbalance of polaritons with spin +1 and
those with spin *1, and the polariton interaction strength, namely g

so
= 2

�

V (1)
* V (2)

�

(n~ *
nö) cos2 ✓k0 sin

2 ✓0. After applying the mean field approximation, the resulting Hamiltonian has
a simple form,

H = !~q
†

~q~ +!öq
†

öqö + g~ö(q
†

~qö + q
†

öq~) , (7.32)

with

!~ = cos
2 ✓k0 sin

2 ✓0
�

3n~V (1)
+ 2nöV (2)

�

+!
0
, (7.33a)

!ö = cos
2 ✓k0 sin

2 ✓0
�

3nöV (1)
+ 2n~V (2)

�

+!
0
, (7.33b)

g~ö =
⌅

2
˘

n~nöV (2)
+ 2

�

V (1)
* V (2)

�

(n~ * nö)
⇧

cos
2 ✓k0 sin

2 ✓0 , (7.33c)

!
0
= sin

2 ✓0!b,0 + cos
2 ✓0!a,0 + g0 cos ✓0 sin ✓0 . (7.33d)

In the sample used for the experiment, the photon-exciton detuning was 2.3meV at k = 0,
zero at k = k0 and the Rabi coupling (half Rabi splitting) was 1.6meV at k = 0. Therefore the
Hopfield coefficients are

cos
2 ✓k0 =

1

2
and cos

2 ✓0 ˘ 0.21 . (7.34)

The classical pumping power is changed from having only the vacuum state up to an average
estimated at 380 polaritons at any given time, with a density still below 1 polariton_µm2. The
calibration of the population is explained in Appendix C.

The nonlinear crystal emits pairs of photons entangled in their polarization degree of freedom,
that can be described through the wavefunction

Û

Û

 
0
Î =

1
˘

2

�

H,VÎ+ V,HÎ
�

í
1
˘

2

�

c†
H
q†
V
+ c†

V
q†
H

�

0Î , (7.35)

where c†� is the creation operator of the single photon with polarization � that goes directly to

the detector, whereas q†� is the creation operator of the photon with polarization � that impinges
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onto the upper polariton branch at k = 0. The latter, when inside the cavity, evolves according
to the Schrödinger equation with the Hamiltonian in Eq. (7.32) for the duration t of the mean
polariton lifetime, producing as the output wavefunction

 (t)Î = e*iHt Û
Û

 
0
Î . (7.36)

Note, however, that the parameters of the Hamiltonian depend on the mean number of particles
in the lower polariton branch, cf. Eq. (7.33). Such a population is build by a laser. The Poissonian
fluctuations in the intensity of the laser induces a fluctuation in the number of particles in
the condensate. Using the Quantum Monte Carlo method introduced by Mølmer, Castin, and
Dalibard (1993), I was able to go beyond a mean-field description and take into account these
fluctuations by sampling randomly the state of the condensate when the upper single-polariton
is created. Figure 7.9 shows the number of particles as a function of time, with the “jumps”
due to the pouring and leakage of photons in and out of the microcavity, respectively. The
Poissonian distribution corresponding to each mean number of particles is shown on the right
with colors matching the trajectories. Before one of the entangled photons is sent to the cavity,
the state of the lower and upper polariton branches can be written as

Û

Û

 
0
Î =

Û

Û

Û

n~, nö
⌘

‰ i
˘

2

(~, ~Î* ö, öÎ) , (7.37)

where n~ (nö) is the macroscopic population of the lower branch with spin � =~ (ö) and
(~, ~Î* ö, öÎ)_

˘

2 is the state in Eq. (7.35) written in the basis of circular polarization. The state
after one of the single photons has passed through the cavity is obtained simply by propagating
the initial state with the Hamiltonian in Eq. (7.32), from which I obtain

 (t)Î = e*iHt_= Û
Û

 
0
Î =

Û

Û

Û

n~, nö
⌘

‰
⌅

c~,~(t) ~, ~Î+ cö,ö(t) ö, öÎ+ c~,ö
�

~, öÎ* ö, ~Î
�⇧

. (7.38)

where the coefficients are related to the detuning and the coupling strength through the
following relations,

c~,~(t) =
1

˘

2R
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+ iR cos
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2

⇡�
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⇠Rt
2

⇡

,

(7.39)
where I have used the shorthand notation � = !~ * !ö and R =

t

4g2~,ö +�
2. The final state

of the system is obtained by averaging over many realizations. Because of the fluctuations
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Figure 7.9: Fluctuations of the condensate in the lower polariton branch in a time equivalent to one tenth
of the polariton lifetime �p. The speed and amplitude of the fluctuations increases with the mean number
of particles in the condensate.
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Figure 7.10: Concurrence between the external photons and the polaritons as a function of the power
of the classical laser impinging onto the sample. Each data point (black bullet) is obtained from the 36
measurements of coincidences in all the combinations of polarization (the dotted line serves as a guide).
The solid blue line is a theoretical simulation for a model of fluctuating polarized lower polaritons that
interact with the single upper polariton injected by the quantum source with an interaction strength of 0.9%
of the radiative broadening, and which is in excellent quantitative agreement with the observation. The
red, dashed-dotted line shows the theoretical simulation for a model of a condensate assuming thermal
fluctuations, which gives a worst fit of the experimental observation and suggests that, as expected, the
condensate has Poissonian fluctuations. The green, dashed line shows the loss of concurrence without
polariton interactions, i.e., due only to the polaritons scattered to the state to which the single photon
arrives, confirming that the amount of noise in the experiment is small enough to observe the effects of
interactions on a single polariton.

in the number of polaritons that each single photon sees when they arrive to the cavity, the
reconstructed state of the polaritons becomes mixed and the photon correlations are washed out.
In fact, if the factor Rt_2 is uniformly distributed around an interval �✓ the purity is given by

Tr(⇢2) = 1

2
+
1* cos �✓

�2✓
g

1

2
. (7.40)

The effect of the condensate in the lower branch on the state of the single photon that impinges
onto the upper branch, can be obtained by propagating the initial state of the single photon,
i.e.,  (0)Î = i(~Î* öÎ)_

˘

2, with the effective Hamiltonian in Eq. (7.32):
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and the probability to measure the single photon in the state 'Î = (↵ ~Î+ �ei✓ öÎ)_N with N =
˘

↵2 + �2 is given by,
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2NR2

⌧

R2
�

N
2
* 2↵� cos ✓

�

cos
2

⇠Rt
2

⇡

+ 4↵�R� sin ✓ cos
⇠Rt
2

⇡

sin

⇠Rt
2

⇡

+

+
�

R2
N

2
+ 4(↵2 * �2)g~,ö�* 2↵�(R2

* 2�
2
) cos ✓

�

sin
2

⇠Rt
2

⇡�

, (7.42)

where R and � are as in Eq. (7.39). The theory models the experiment by feeding Hamilto-
nian (7.32) with the initial state in Eq. (7.35) and acquiring statistics over repetitions of this
scenario with coefficients (7.33) fluctuating with Poissonian distributions with a mean n~ö, thus
describing a polariton condensate beyond mean-field.



i
i

“EwQL” — 2019/10/28 — 2:05 — page 143 — #83 i
i

i
i

i
i

7.3 exciting with entangled photons 143

7.3.4 Loss of concurrence

Measuring the concurrence as a function of the intensity of the driving laser (or equivalently, the
number of polaritons on the classical state occupying the lower polariton branch), we observe a
decay of the entanglement when the polariton density increases, as shown in the data points of
Fig. 7.10. While the evolution of the wavefunction is expected, the loss of concurrence seems
to suggest a decoherence of the single polariton when it is made interact with the classical
state. There are several reasons why the concurrence is apparently lost. Some of them are
related to the presence of the condensate in the system, and are completely independent of
the strength (or even existence) of the interactions. The spread of the condensate, both in real
and in momentum space, yields to a complex redistribution of polaritons on their branch and
scattering processes start to occur to the state to which the single photon arrives. However,
as I will show in the next section, such a “noise” induced by the scattered polaritons is small
enough to allow us to resolve the effect of interactions. The complexity of the situation increases
when the interactions are taken into account, as they induce an effective coupling between
the two branches. Specifically, the lower polaritons of a given polarization are coupled to the
upper polaritons with the opposite polarization, and such a coupling breaks the quantum
superposition of the single polariton into a (disentangled) product state. Furthermore, as has
been observed by Love et al. (2008), the lower polariton condensate fluctuates with Poissonian
statistics, and each pair of entangled photons finds the microcavity in an instantaneously
different state, which inevitably propagates their wavefunction in a different way. Thus, in the
final observation, which is reconstructed by averaging over many of such individual realizations,
we observe that the entanglement—measured through the correlations in polarization between
the pair of photons, after one of them has passed through the microcavity—is spoiled and that
the state of the photon pair becomes mixed.

To describe the experiment, I included all these effects, and I was able to reproduce the-
oretically the empirical observation with an excellent agreement (cf. the blue solid line in
Fig. 7.10). For the model, I assumed that the polaritons on the lower branch are in a coherent
state with a single wavevector k of the single-mode ground state system, and that the laser
confines them to a finite extension in space of A = 706µm2. Furthermore, the spot on which the
single photon impinges on the sample has a radius three times smaller. In a different setup, we
observe that mean lifetime of the microcavity is 3 ps, thus we assume that the time that each
polariton remains inside the microcavity follows a Poissonian distribution with such a mean
value. With these conditions, I fit the observation with a same-spin interaction between excitons
of V (1)

= 73.9µeVµm2 and with opposite spin of V (2)
= *0.1V (1), which, although larger than

the estimate given by Tassone and Yamamoto (1999) using microscopic theories, are consistent
with other recent observations, such as the one made by Walker et al. (2017) that attribute such
high values to the presence of an exciton reservoir, which undoubtedly could be excited by
thermal processes and Auger effects that, in addition to the background noise, would also be
detrimental to the concurrence. While the magnitude of this interaction remains to be asserted
and further studied, my calculation shows that the wavefunction of a single-polariton Fock
state is indeed affected by its interactions with the condensate in the lower polariton branch,
albeit in a random way as ruled by fluctuations currently beyond our control.

7.3.5 Noise in the measurement

The behaviour shown in Figure 7.10 was obtained by following the work of Altepeter et al.
(2003), thus performing a hyper-complete tomography of the state of the pair of entangled photons.
This tomographic process, which was proposed by James et al. (2001), consists of counting the
coincidences of the photons in a combination of three bases of polarization (logical, diagonal,
and circular). Therefore, the noise in the form of accidental coincidences from any source not
related to the entangled photons can be corrected on average by subtracting the background
coincidences measured in absence of the quantum source. There is, however, another form
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of noise that cannot be corrected in this way when the condensate is present. The increasing
power on the x-axis of Fig. 7.10 corresponds to more populated polariton condensates in the
microcavity, which collectively affects the single polariton sent by the nonlinear crystal: the
denser the condensate, the larger is its effect on the concurrence. The interpretation for this
observation is that more polariton in the condensate lead to stronger shifts to the energy of
the single polariton due to the polariton-polariton interaction, thus spoiling the concurrence
through the fluctuation of the number of condensed polaritons. Another factor that would
affect the concurrence, even in the absence of the interaction, is if the condensate, at k = k0 on
the lower branch, would scatter polaritons to the mode excited by the quantum source (e.g.,
to the upper polariton branch at k = 0), thus introducing indistinguishable but uncorrelated
polaritons to the mode from which we measure the correlations. Being indistinguishable from
the “real” signal, this noise cannot be corrected by simple subtraction of a background, as it is
related to the signal. For instance, if a scattered polariton and one of the entangled photons
are present simultaneously in the cavity, we should expect coalescence effects such as Bose
stimulation, which is in fact, additional physics rather than noise. The respective rates at which
the mode is populated by scattered polaritons, on the one hand, and by the quantum source,
on the other hand, suggest that the effect should however be very small. But since the effect
on the concurrence could be large, we have to account for it in the theoretical modelling.
We now discuss how doing so allows us to rule out that our observation is dominated by
scattered polaritons from the condensate and that the observation is explained instead by
direct interactions of the single upper polariton at k = 0 with the rest of the lower-polariton
condensate at k = k

0
. To quantify the amount of polaritons that are scattered to the wavevector

of the single polariton, we measured the luminescence from the cavity. The wavevector selection
was made by spatially filtering the emission with a pinhole. Then, the energy resolution was
obtained by passing the light through a monochromator. In Figure 7.11, I show the intensity of
the emission at the wavevector from which we collected the photons to count the coincidences
with the single photon. There, I show in red the emission without filtering in energy (as the
APD is not sensible to the energy of the photons that it collects), and in green and blue the
contribution from only the lower and upper polariton branch, respectively. The latter polaritons
are in fact populating the state to which the single photon arrives, and thus they are reducing
the amount of correlated signal.

Figure 7.12 shows, for the various power of the laser that creates the condensate in the lower
polariton branch, the coincidences between the photons emitted by the cavity with vertical
polarisation and photons from the nonlinear crystal with horizontal polarisation going directly
to the APD. This basis corresponds to a state in which the pair of photons are generated by
the nonlinear crystal, and therefore provide the higher visibility for the signal. In panel (a), I
show the case in which the power of the driving laser was set at 50 nW. There, the signal (the
peak at zero delay) can be clearly distinguished from the accidental coincidences that constitute
the constant background. However, such a distinction becomes less clear as the power of the

Figure 7.11: Luminescence of the sample at the
wavevector at which the single photon impinges,
normalized to the intensity of the single polari-
ton. The colour lines corresponds to the full stripe
(red), i.e., without filtering in energy the emission
of the sample, the light emitted from the lower
branch (green) and from the upper branch (blue).
The measured values are shown by the dots, while
the dotted lines represent the linear fit of the data.
Note that when the concurrence of the entangled
photons starts to fall (at about 1µW) the inten-
sity of the luminescence from the lower branch is
about 200 times as larger as the single photons.
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driving laser increases and the amount of accidental coincidences is comparable to the amount
of correlated signal, as shown in Panels (b-d). To accommodate the noise into the description
of the experiment, we need to upgrade the theoretical model. The scattering of polaritons
to the wavevector to which we sent the single photon can be modelled as an incoherent
continuous driving. The intensity of such a driving can be deduced from the luminescence of
the microcavity, shown in Fig. 7.11. For instance, when the intensity of the driving laser is 20µW,
the intensity of the luminescence from the lower polariton branch is about 2000 times larger
than the intensity due to the single polariton, which comes with a repetition rate of 500 000
photon pairs per second. Since the cavity has a lifetime of 3 ps, the average number of photons
at the wavevector where the single polariton impinges is thus 0.003. The description of the
system is therefore upgraded to a master equation, in which the rate of the incoherent pumping
is chosen so that the steady state population of the cavity is equal to the average population
estimated from the luminescence. To take into account only the coincidental detection, I use
the Quantum Monte Carlo method developed by Mølmer, Castin, and Dalibard (1993) and
compute the quantum trajectories of the experiment. In them, the Hamiltonian propagation
is still done by Eq. (7.32), while the decay and incoherent driving are taken into account as
quantum jumps. After many such trajectories, I reconstruct the state of the entangled photons
by performing the tomography, in the same way that I reconstruct the state form the actual
experiment. In Fig. 7.10 I show the dependence of the concurrence on the intensity of the laser
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Figure 7.12: Counting photon coincidences, as a function
of pumping power. The photon that passes through the
cavity and becomes a polariton is detected with vertical
polarization. The other one, that goes directly from the
nonlinear crystal to the APD is measured in with horizon-
tal polarization. The laser sustaining the polariton conden-
sate impinges onto the cavity has a power of (a) 50 nW,
(b) 5µW, (c) 16µW and (d) 26µW. In all the panels the
background noise follows a Poissonian distribution. As
the power of the driving laser increases, the amount of
coincidences due to the entangled single polariton are not
simply added on top of the background noise, but instead
they remain constant. This follows from the “noise” pro-
duced by scattered polaritons from the condensate to the
mode excited by the quantum source, being indistinguish-
able with the signal, and requiring being included in the
model rather than subtracted from the data.
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driving in the lower branch, taking into account the noise due to the scattered polaritons (green,
dashed line) and both the noise and the interactions (blue, solid line). It is clear that if the state
to which the entangled polariton arrives is largely populated, the tomography of the pair of
photons becomes spoiled and the concurrence drops. However, the noise due to the scattered
polaritons from the condensate is far from enough to account for our observations. This assures
that interactions are the dominating effect.

7.3.6 Quantum Spectroscopy

Using quantum light as the driving field provides new methods to gain information on the
condensate itself, which is able to affect the quantum correlations between two particles in a
measurable way without producing any sizable change to the single-photon observables such as
the luminescence. For instance, we can go beyond simply characterizing the underlying Hamil-
tonian by mapping its effect on all the possible polarization states; namely, the way in which the
condensate transforms the Poincaré sphere. In the cases where one deals with entangled states,
as we do in our experiment, this can be achieved using the technique introduced by Altepeter
et al. (2003), known as the Ancilla Assisted Quantum Process Tomography (AAQPT). The protocol
consists of characterizing the action of an unknown map (to which the pioneering authors refer
to as the “black box”) acting on one of two entangled qubits. Because of the intrinsic correlations
on the bipartite system, the map can be recreated using only one input and its corresponding
output state (instead of having to measure all the combinations).

The characterization of the state of the qubit is done through the Stokes decomposition, by
which the density matrix of a qubit is written as

⇢ = 1

2
ír � í� =

1

2
(r
0
1+ r

1
�
1
+ r

2
�
2
+ r

3
�
3
) , (7.43)

where ír is the Stokes vector and í� is the vector of Pauli matrices. The AAQPT allows to obtain
the black box (in our case, the microcavity with a lower polariton condensate) map � from
the expression ír

out
= �ír

in
where ír

in
and ír

out
are the Stokes parameterization of the state of the

single photon before and after it goes through the cavity, respectively. The numerical calculation
of � is obtained by the linear decomposition � = (A*1B)T with A and B matrices obtained from
the state of the pair of entangled photons before and after one of the photons has gone though
the cavity and are defined as

Ai,j = Tr[(�i ‰ �j)⇢out ] and Bi,j = Tr[(�i ‰ �j)⇢in] . (7.44)

In the experiment, where errors and noise could lead to a non-physical result, the map is
best estimated by a Maximum Likelihood process over � , which provides a trace preserving and
completely positive map �

physical
that minimizes the statistical dispersion of the expectation

values of the measured map �
raw

. An intuitive representation of � that facilitate its interpretation
is given through the Poincaré sphere, where any qubit is mapped as a point on the surface,
using (r

1
, r

2
, r

3
) as Cartesian coordinates, and it is shown in Fig. 7.13 for three powers of the

driving laser. There, r
0

represents the intensity of the field, r
1

the degree of linear polarization,
r
2

that of diagonal polarization and r
3

that of circular polarization. In essence, the sphere
rotates under unitary transformation and shrinks under the effect of decoherence. Our joint
experimental/theoretical analysis shows that the sphere does not rotate, although it experiences
some wobbling, until at larger pumping, it shrinks into a spindle. The experimental tomography
obtained directly from the post-processing of the data. The theory applies the same procedure
to input states (7.35) undergoing the evolution of Hamiltonian (7.32). We find that the shrinking
into a spindle, also due to the fluctuating condensate that causes the loss of concurrence, can
be obtained with no rotation of the sphere with increasing pumping when !~ * !ö and g~ö
remain constant on average (although they are subject to fluctuations). In these conditions, both
polarization states at the extremities of the spindle have a constant energy shift and there is no
admixture of polarization. This results in the decoherence of all polarization states except for
the eigenstates ~, ö, while not producing a unitary rotation.
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Figure 7.13: Ancilla assisted quantum process
tomography. Our technique allows us to ob-
serve the effect of the lower polariton conden-
sate on the polarization of an upper polariton
qubit, as a function of the increasing pumping
(left column). The shrinking of the Poincaré
sphere into a spindle confirms that the qubit is
affected by its interaction with the lower con-
densate, whose fluctuations lead to an effective
decoherence when averaging. The theoretical
model leads to an excellent agreement of the
observed phenomenology (right column) and
points at future methods for characterizing also
the condensate itself.

7.4 conclusions

I have shown how exciting a system of weakly interacting particles with Quantum Light allows
us to obtain information about the internal structure of the system. In particular, we have
seen that exciting a system of polaritons with the emission of a 2LS coherently driven in the
Mollow triplet regime, allows us to map the photoluminescence and the photon correlations
of the 2LS to the polaritons. While the polaritons are the target of the excitation, they also
behave as a colour filter of the Mollow triplet, and they are able to observe the whole landscape
of correlations that the photons emitted by the triplet have. I have shown how exposing the
polariton dispersion relation to the various types of light allows us to determine the strength of
the interactions between polaritons, thus demonstrating an implementation of a spectroscopic
technique, to which I refer as Mollow Spectroscopy. These results suggest numerous other
applications, including the spin, performing quantum pump-probe and two-colour spectroscopy
with delay between quantum correlated beams, probing and exciting continuous fields or their
resonant configurations such as optical parametric oscillators, and driving other quantum
systems, e.g., two-level systems, coupled cavities, polariton circuits, etc., each of them amenable
to several types of quantum light. The emitter of Fock states proposed by Sánchez Muñoz et al.
(2014a), releasing all its energy in bundles of N photons, should be a key resource for quantum
excitation. Beyond the exotic states of light already alluded to, this may open the door to new
classes of excitations, such as the correlated electron-hole clusters, the so-called dropletons,
discovered by Almand-Hunter et al. (2014) within the limitations of classical excitations by
theoretical deduction.

As the state-of-the-art polariton samples are not ready yet to implement Mollow Spectroscopy,
we turned their excitation with simpler but still quantum sources of light, namely, a source
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of pairs of entangled photons. Using such a source, we drove polaritons a little step closer to
the realization of a quantum computer, and demonstrated for the first time the generation of
a genuinely quantum state of the polariton field, by observing one of the entangled photons
being absorbed by the microcavity, becoming a single polaritons, being re-emitted as a photon
and keeping its quantum correlations during the whole process. Repeating the experiment with
the single photon impinging onto a microcavity containing a polariton condensate allowed
us to show that the quantum correlations between the photons are maintained and their state
can be manipulated through the interaction between polaritons, which I have been able to
estimate from fitting the experimental observation with a full quantum mechanical model.
Further and systematic investigations using these techniques will allow placements of stricter
boundaries around the strengths that I have reported and clarify the nature of the strongly
correlated gas that is formed at high densities. These current results have obvious implications
for the design and implementation of a new generation of quantum gates, routing interacting
polaritons in predetermined landscapes. Polaritons thus appear to be the possible precursors of
the long-sought strongly interacting photons needed for the realization of scalable and efficient
quantum computers.
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8E X C I TAT I O N W I T H T H E B U N D L E R

Under the trees of England I meditated
on this lost and perhaps mythical labyrinth. . .

I thought of a maze of mazes, of a sinuous,
ever growing maze which would take me in

both past and future and would somehow involve the stars

— Jorge Luis Borges

8.1 introduction

The Bundler is a device proposed by Sánchez Muñoz et al. (2014a) already discussed several
times in the previous chapters. As a short reminder, it is a source which emits packets—or
simply, bundles—of exactly N-photons. These photons are the result of a relaxation process
that takes place involving virtual (rather than real) energy levels, and are therefore highly
quantum-correlated. The device is based on the Mollow (1969) triplet, which has also been
widely discussed in the previous chapters. Here, we are interested in the photons themselves
that are emitted rather than in the mechanism of their production. As the emission from these
frequencies is considerably low as compared to the emission at the frequencies from the peaks,
the emission is enhanced by coupling a cavity to the 2LS at the frequency of interest. In general,
the bundles are composed of N photons and they are obtained when the cavity is resonant to
the N-photon transition of the Mollow ladder, i.e., !a = !

L
±⌦

+
_N , where ⌦

+
is the splitting

between the central and the lateral peaks of the triplet. The photon bundles are emitted with
a particular temporal structure, which Sánchez Muñoz et al. (2014a) identified as a geometric
series as a result of the spontaneous emission of a Fock state of N photons. Such a structure
is not visible from the density matrix in the steady-state, but can only be observed in an
experiment, either on a computer (with a Monte Carlo simulation) or in a laboratory. The fact
that the photons of a bundle are not emitted simultaneously poses an important question: how
far apart can a pair of photons be, so that they still constitute a photon bundle? The answer
to this question lies at the heart of the definition of the bundle and is a key element to the
definition of the purity of the bundles. The shape of the emission spectrum of the Bundler’s
cavity depends on the intensity with which it is coupled to the 2LS, and the intensity at which
the latter is driven by a laser: while a larger driving intensity increases the splitting between the
various N-photon resonances, it also reduces the amount of signal that the 2LS emits at those
frequencies. Figure 8.1, left panel, shows a prototypical example of the emission spectrum of the
N = 2 bundler when the cavity is resonant with the two-photon transition. Note that the largest
contribution, both in height and intensity, corresponds precisely to the light that comes from
the two-photon transition. The latter indicates that the emission of the Bundler is dominated
by photon pairs rather than single-photons. Sánchez Muñoz et al. (2018) proposed a way to
estimate the purity of the N-photon emission directly from the density matrix. It relies on
obtaining the eigenvalues of the Liouvillian describing the system, in the same way that we did
in Section 6.4 when we discussed the dressing of a 2LS when driven by a Mollow triplet. The
method allows us to obtain the frequencies at which the system emits and the intensity of such
an emission. Thus, one can estimate the N-photon purity by summing the contributions from
all the emission in a frequency window neighbouring the N-photon resonance and comparing
it with the total emission. In the late 2000s, del Valle, Laussy, and Tejedor (2009) showed that
the emission spectrum of a quantum system can be written as the sum of Lorentzians with
amplitude Lp and dispersive components with amplitude Kp, as given in Eq. (6.13). Each of
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Two-photon peak

Mollow triplet

Figure 8.1: Emission spectra of the Bundler (left) and its driving of a Harmonic oscillator (middle) and
a two-level system (right). (a) The cavity of the Bundler displays the triplet structure—whose peaks
are located at ! = !� and ! = !� ± 2⌦�—inherited from its coupling to the 2LS driven by the laser,
but the dominant emission comes at the frequency corresponding to the 2-photon transition—which is
! = !� +⌦�— to which the cavity is resonant. (b) and (c) show the emission spectrum of a harmonic
oscillator and a two-level system, respectively, when they are driven by the Bundler and are set in
resonance with the 2-photon transition too. In both cases the emission is predominantly at the frequency
of the Bundler. (e-g) show the figures in panels (a-c) in logarithmic scale to unveil the structure hidden in
linear scale. The figures were obtained by setting �� , the decay rate of the two-level system driven by the
classical laser, as the unit; �a = 2�� , �b = 2�� , g = 2�� , !a = !b = !� +⌦� , and ⌦� = 25�� .

the Lorentzians is centered at a frequency !P and has a linewidth �p, which can be obtained
through the diagonalization of the Liouvillian of the system, as shown in Chapter 6. Thus, one
can estimate the purity of the N photon emission by summing all the amplitudes Lp such that
their associated frequency !p satisfies the condition

!p *!N  f
�a
2
, (8.1)

where !N is the frequency of each photon from the N-photon transition and �a is the linewidth
of the cavity. Another way of estimating the purity of the N-photon bundle emission is to
consider directly the times at which the photons are emitted. One can then assume that the
total emission from the source is the result of various competing mechanisms of emission which
i) are independent from each other and ii) follow a particular probability distribution. Thus, in
general and operating in the regime of N-photon bundles, the probability to obtain n photons
can be obtained as

pN (n) = 1

n!
)n
)sn

⇧x1+x2+5+xN (s)
Û

Û

Ûs=0
, (8.2)

where ⇧x1+x2+5+xN = ⇧x1⇧x2 5⇧xN is the generating function for a random process that
consists in collecting n events from N independent random variables Xk, with 1 f k f N ,
describing the emission of a k-photon bundle. The fact that one does not get exclusively the
sought N-photon case can be due to other emission channels as discussed above but also
because the bundle was broken, for instance as a result of imperfect detection, as I have
shown with Zubizarreta Casalengua et al. (2019b). Whatever the reason, its emission is never
ideal, which is what the purity quantifies. In the original paper, Sánchez Muñoz et al. (2014a)
assumed that the emission was made of N-photon bundles and individual photons, each of
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them following a Poissonian distribution with mean value �
1

and �N , respectively. Thus, the
generating function entering into Eq. (8.2) was simply

⇧x1+xN = ⇧x1⇧xN = e*�1(1*s)e*�N (1*sN ) , (8.3)

where we have assumed the generating function ⇧xk = ÍsxkÎ = e*�k(1*sk), which corresponds
to a Poissonian distribution. Replacing the generating function from Eq. (8.3) into Eq. (8.2)
yields the probability distribution (there is a typo of an extra n! factor in Sánchez Muñoz et al.
(2014a)’s paper, the correct expression is given here)

pN (n) = e*(�1+�N )

n_N
…

k=0

�n*kN
1

�kN
k!(n* kN)!

. (8.4)

Thus, the purity ⇡N of the N-photon bundle emission is the ratio of N-photon emission as
compared to the total emission, namely

⇡N =
�N

�
1
+ �N

. (8.5)

The probability distribution of the observed photons cannot be accessed through the density
matrix, as the latter provides statistical averages only. Thus, one has to turn to, e.g., Monte
Carlo simulations like the one that I presented in Chapter 2. The recent work by Zubizarreta
Casalengua et al. (2019b) showing that even in the regime of N-photon emission, the light
coming from the Bundler is spoiled not only by individual photons, but also by bundles of two
photons, bundles of three photons, and so on, makes the probability distribution presented
in Eq. (8.4) only accurate for the case N = 2. In all the other cases, one has to consider the
contribution from bundles of all number of photons and the purity becomes

⇡N =
�N

≥

k=1 �k
. (8.6)

Using the same parameters to obtain the emission spectra for each of the systems shown in
Fig. 8.1, I made a Monte Carlo simulation of their photon emission. An extract of 70 emitted
photons (of the thousand obtained) is shown in Fig. 8.2(a-c), with small triangles highlighting
the cases in the emission takes place as a two-photon bundle rather than by single photons. The
quantification of the purity is shown in Fig. 8.2(i-iii), and is obtained from the Monte Carlo

Bundler Harmonic oscillator Two-level system
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Figure 8.2: Purity of the two-photon bundle emission from (a) the Bundler and the emission of (b) a
harmonic oscillator and (b) a two-level system driven by the Bundler. The upper row shows a sample of
the emitted photons, showing that the two-photon bundle emission can also be observed with the naked
eye. The bottom row shows the probability distribution of the photon emission in a time window T and
the fit to the probability distribution in Eq. (8.2). The parameters are the same as in Fig. 8.1.
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simulation by tallying the number of photons detected in a given time window T (shown
as orange dashed lines) and fitting it with the probability distribution in Eq. (8.2) (shown
as solid blue lines). Then, the purity of the two-photon emission is computed with Eq. (8.5)
which gives ⇡

2
= 0.29 for the Bundler itself, and ⇡

2
= 0.11 and ⇡

2
= 0.05 for the harmonic

oscillator and the two-level system when driven by the Bundler. The low purity of the Bundler
is a consequence of the choice of parameters that allow to observe the Mollow triplet and
the two-photon peak of Fig. 8.1(a). However Sánchez Muñoz et al. (2014a) have shown that
there exists a set of values for which the emission of the Bundler is more than 99% made of
two-photon bundles. Note, in particular, that the purity of the emission from the systems driven
by the Bundler also has a reduced purity, which is more dramatic in the case of the two-level
system: the two-photon bundles that impinge onto the 2LS are broken as the latter can only
sustain a single excitation at a given time.

The computational complexity of simulating the N-photon Bundler and the effect of it
driving other quantum systems becomes heavy already for N = 3. Thus, one should turn
either to dedicated algorithms or computing clusters. To study the effect of the Bundler on an
optical target, it is therefore impractical to have to start with already extremely heavy problems.
Another route is to describe the emission of the Bundler from a phenomenological point of
view. In the following Section, I tackle this problem.

8.2 phenomenological bundler

In this section, I explore possible toy models to describe simply a device that behaves like the
Bundler, without having to simulate it in all its intricate details. Such a simple description of
the Bundler consists of a single mode (with annihilation operator d, for which I still do not
assume any type of statistics) obeying a master equation of the type

)t⇢ = i
⌅

⇢,⌦d
�

d†N + dN
�⇧

+
�d
2
Ld⇢+

Pd
2
Ld†N ⇢ , (8.7)

where the lindblad terms Lc⇢ are defined as in Eq. (1.21). Here, the driving from a N-photon
laser is done with intensity ⌦d and we assume that the system is driven in resonance, namely
that !d = N!

L
, and the incoherent driving is done at a rate Pd . The coherent and incoherent

drivings can be described by the same Eq. (8.7) by setting Pd = 0 and ⌦d = 0, respectively. I
now tackle several cases of interest, starting with the simplest Bundler, namely letting N = 2 in
Eq. (8.7).

8.2.1 Three-level system with coherent two-photon driving

This scenario is described through the master equation (8.7) setting Pd = 0 and changing the
generic operator d for an operator b truncated at two excitations, thus becoming a three-level
system (3LS). In the steady-state, the population of the 3LS is given by

nb =
8⌦

2

b

�2b + 8⌦
2

b

, (8.8)

which saturates to 1 in the limit of very intense driving. In fact, a very intense one-photon laser
driving a N-level system yields a population equal to N/2, evidencing the Rabi oscillations.
Interestingly, the counterpart with a N-photon laser yields populations smaller than N_2. At
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Figure 8.3: Emission spectra of a three-level system driven by a two-photon laser. As the intensity of
the driving laser increases, the emission becomes narrower to latter on develop a splitting similar to the
Mollow triplet, although in this case only the lateral peaks survive.

the two-photon level, the emission spectrum is given by a superposition of a pair of lorentzians
centered at the natural frequency of the 3LS:

Sb(!) =
1

16⇡⌦b

�b + �*_2
(�b + �*_2)2 +!2

T

�b(�b * �*) + 4(�
*
* 2�b)⌦b + 4⌦

2

b
�
*

*

�b(�b * �+)* 4(�
+
* 2�b)⌦b + 4⌦

2

b
�
+

U

+

+
1

16⇡⌦b

�b * �+_2
(�b + �+_2)2 +!2

T

�b(�b + �+) + 4(�
+
+ 2�b)⌦b + 4⌦

2

b
�
+

*

�b(�b + �*)* 4(�
*
+ 2�b)⌦b + 4⌦

2

b
�
*

U

, (8.9)

where �
±

=

t

�2b ± 8�b⌦b * 8⌦
2

b. Figure 8.3 shows the emission spectrum of the three-level
system as a function of the intensity of the driving. Starting from the vanishing driving,
increasing the intensity of the driving becomes narrower to later develop a pair of shoulders,
which become independent peaks on the sides of the central frequency. Note that this is
fundamentally different from the Mollow triplet, being a quadruplet and with no central peak.
When considering a four-level system (4LS) driven by a three-photon laser one sees a similar
behaviour in the emission spectrum. However, when the intensity of the driving is larger than
the decay rate of the 4LS the structure of the emission can be identified as a (Mollow) triplet
with some shoulders on the satellite peaks, as shown in Fig. 8.4.

The correlations between pairs of photons, defined as in Eq. (1.33), are given by

g(2)b (⌧) = 1* e*�b⌧
LH

1

2
*

�2b
16⌦

2

b

I

cos

⇠

2

˘

2⌦b⌧
⇡

+

˘

2�b
4⌦b

sin

⇠

2

˘

2⌦b⌧
⇡

M

, (8.10)

which is shown as a function of the intensity of the driving in Fig. 8.5(a). Here, the effect
of the two-photon driving is shown in the argument of the trigonometric function, which is
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Figure 8.4: Comparison of the emission spectra of N-level systems driven with the same intensity ⌦b by
a (N * 1)-photon laser. (a) At low intensity of the driving, the emission spectra of the three systems are
similar: a central peak flanked by a shoulder on each side. (b) Increasing the intensity takes the 2LS into
the Mollow regime (green line), the 3LS becomes a quadruplet without a peak at the central frequency,
and the 4LS turns into a quintuplet with a the largest peak at the central frequency, resembling the Mollow
triplet, albeit with broader lines and a fine structure splitting.

augmented by a factor
˘

2 with respect to a 2LS driven coherently by a one-photon laser. The
zero-delay correlation

g(2)b (⌧ = 0) =
1

2
+

0

�b
4⌦b

12

, (8.11)

reveals that the emission can be antibunched (albeit with a lower boundary at 1/2) in the limit
of very intense excitation, while in the regime of vanishing driving the correlations explode
to an infinite superbunching. Furthermore, the correlations between two-photon bundles, as
introduced in Eq. (4.6), are given by

g(2)
2 b (⌧) í

Íb† 2(0)b† 2(⌧)b2(⌧)b2(0)Î
Íb† 2b2Î2

= 2e*�b⌧
⌧

cosh(�b⌧)* cos

⇠

2

˘

2⌦b⌧
⇡�

, (8.12)

which always vanishes at zero-delay, but as the intensity of the driving increases the oscillatory
behaviour dominates, as shown in Fig. 8.5(b). Thus, Eqs. (8.10–8.12) indicate that the bundles
are obtained in the regime of low excitation where the g(2)b (0) ∏ 1 while the g(2)

2 b (0) ~ 1.
The expressions for a four-level system driven at the three-photon level are also analytical,
although they are too cumbersome to be written here. However, the emission spectrum and
the second-order correlations between individual photons and between three-photon bundles
are shown in Fig. 8.5(c–d), respectively, and they show the same trend. Together, these two
quantities suggest that the emission of the photons is taking place in bundles, and a Monte
Carlo simulation of the emission confirms it. Figure 8.6 shows in solid blue the probability
distribution to observe n photons in a time window T for

(a) a three-level system driven by a two-photon laser, emitting two-photon bundles,

(b) a four-level system driven by a three-photon laser, emitting three-photon bundles,

(c) a five-level system driven by a four-photon laser, emitting four photon bundles.

The probability distribution can then be fitted with Eq. (8.2) which is shown in the figures as
dashed red lines. The parameters of the fit—the intensity of the N-photon emission process—
can then be used to compute the bundle purity of the sources, giving ⇡

2
= 0.999, ⇡

3
= 0.999

and ⇡
4
= 0.997. Importantly, note that the fitting to the probability to observe N-photon bundles

is done considering that the source can also emit 1 f k f N photon bundles (instead of
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Figure 8.5: Photon corre-
lations of a NLS driven co-
herently by an N-photon
laser. (a–b) Second or-
der correlation function
between individual pho-
tons and between two-
photon bundles for a
3LS. (c–d) Second order
correlation function be-
tween individual photons
and between three-photon
bundles for a 4LS. The
two cases have a simi-
lar structure: bunching in
the single-photon second-
order correlations func-
tion at low intensity driv-
ing, matched with anti-
bunching in the N-photon
bundle second-order cor-
relation function. These
two are indicators of the
bundling regime of the
system.

only 1 and N , as considered initially by Sánchez Muñoz et al. (2014a)). In fact, for the photon
distribution shown in Fig. 8.6(b) I find

�
2

�
1

= 0.947 and
�
3

�
1

= 2205 ,

whereas for the distribution in Fig. 8.6(c) I find

�
2

�
1

= 1.203 ,
�
3

�
1

= 0.949 and
�
4

�
1

= 1051 ,

which shows that, although the contribution for the intermediate k photons are small, they
cannot be neglected and the fit should be done with Eq. (8.2) rather than with Eq. (8.4).
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Figure 8.6: Purity of the two, three, and four-photon bundle emission from an n-level system driven by
an N-photon laser. The panels show the cases with of a (a) three-level system, (b) four-level system and
(c) five-level system driven a the two, three and four photon level, respectively. In all the cases the decay
rate of the NLS was taken as the unit and the intensity of the driving was ⌦b_�b = 10

*2, and the purity of
the bundles exceeds 99%.
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Regardless of the regime of excitation, the state of the source is given by

⇢b 2 =
1

�2b + 8⌦
2

b

`

r

r

r

p

�2b + 2⌦
2

b 0 i
˘

2�b⌦b
0 4⌦

2

b 0

*i
˘

2�b⌦b 0 2⌦
2

b

a

s

s

s

q

, (8.13a)
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for which the probabilities of having one and two photons (in this systems, the probability
of having one photon is always twice the probability of having two) are maximized in the
limit ⌦b_�b ô ÿ, where they become pb(1) = 1_2 and pb(2) = 1_4. However, in such a high-
intensity driving regime, the off-diagonal terms in Eq. (8.13a) vanish and the state becomes
completely mixed. This can be nicely observed through the Wigner function of the state of
light, which in phase-space with Cartesian coordinates (x, y) and for an arbitrary intensity ⌦b
becomes

Wb 2(x, y) =
2

⇡
e*2r2

�2b + 8⌦
2

b

�

�2b + 16r4⌦2

b + 8r2�b⌦b sin
⌅

2 arg(x+ iy)
⇧�

, (8.14a)
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⇧
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(8.14b)
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e*2r2

�2b + 56⌦
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2
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⌅

4 arg(x+ iy)
⇧�

,

(8.14c)

where r2 = x2 + y2. They have a richer structure than the Bundler, which is dominated by the
vacuum and hence depicted as a Gaussian in phase space.

8.2.2 Three-level system with incoherent two-photon driving

This scenario is described through the master equation (8.7) by setting ⌦d = 0 and changing
the generic operator d for an operator b truncated at N excitations. In the steady-state, the
population of an (N + 1)-level system driven by a reservoir supplying its photons in packets
of N photons is given by

nb(N) =
N!NPb

�b + pbN![� + 
0
(N + 1)]

, (8.15)

where � is the Euler-Mascheroni constant and  
0
(x) is the Digamma function, defined as the

logarithmic derivative of the Gamma function

 
0
(x) = )

)x
(ln�(x)) =

�
®
(x)
�(x)

. (8.16)
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Figure 8.7: Photon correlations
of a 3LS driven incoherently
by a reservoir supplying the
photons in packages of N-
photons. (a) Second-order cor-
relation function between in-
dividual photons. (b) Second-
order correlation function be-
tween two-photon bundles. The
region with ⌦b�b < 0.1 pro-
vides light which purity of two-
photon emission is about 99%.

In particular, considering the case for N = 2, Eq. (8.15) becomes simply

nb(2) =
4Pb

�b + 3Pb
. (8.17)

Similarly to the case with coherent excitation, the emission spectrum in this case is also given
by the superposition of two Lorentzians centered at the frequency of the 3LS

Sb(!) =
1

2⇡
Pb * 2�b
Pb * �b

Pb + �b_2
(Pb + �b_2)2 +!2

+
1

2⇡
Pb

Pb * �b

3�b_2
(3�b_2)2 +!2

, (8.18)

which yields a single line of luminescence. Furthermore, the correlations between individual
photons and between two-photon bundles are given by

g(2)b (⌧) = 1 +

L

14P 2

b * 11Pb�b + �2b
8Pb�

sinh

⇠�⌧
2

⇡

*
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8Pb
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⇠�⌧
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M

e*(2Pb+3�b)⌧_2 , (8.19a)
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e*(2Pb+3�b)⌧_2 , (8.19b)

where �2
= 4P 2

b * 12Pb�b + �2b . They are shown as a function of the intensity of the incoherent
driving in Fig. 8.7(a–b). The analogous expressions for a four level system driven at the three-
photon level are too cumbersome to be written here, but they are shown in Fig. 8.7(c–d) as a
function of the intensity of the driving. As was the case with the coherent driving, the structure
of the correlations resembles the case of the three-level system driven by two-photons, and the
region of parameters for which g(2) ∏ 1 while g(2)N b ~ 1 are ideal for emission of Bundles.

The density matrix of the source is

⇢b =
1

3Pb + �b

`

r

r

r
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�b 0 0

0 2Pb 0

0 0 Pb

a

s

s

s

q

, (8.20)



158 excitation with the bundler

from which we know that the probability to obtaining one photon is always twice as large as
the probability of having two photons. The Wigner function in this case is

Wb(r) =
2

⇡
(8r4 * 1)Pb + �b

3Pb + �b
e*2r

2

, (8.21)

where r2 = x2 + y2, which becomes negative for Pb_�b > 1_(1* 8r4). While in the limit of low
excitation, the Wigner function is given simply by a Gaussian, when the driving and decay
rates are of the same magnitude, the function becomes a surface similar to a torus with the
same radius as figure 8.15(c), albeit with a finite intensity of driving (in the case of the coherent
driving, the torus was obtained in the limit of infinite driving). In the general case of a (n+ 1)-
level system in contact with a reservoir supplying the excitation in packages of N-photons, the
probability to observe k photons in the system is given by

pN (0) =
�b

�b + pbN![� + 
0
(N + 1)]

, (8.22a)

pN (k) = N!

k
Pb

�b + pbN![� + 
0
(N + 1)]

for 1 f k f N , (8.22b)

and, as the incoherent driving does not grow coherence in the system, all the off-diagonal
elements of the density matrix are zero and all the information of the state of the (N + 1)-level
system is given by the probabilities in Eq. (8.22). For instance, at zero delay the second order
correlation function becomes simply

g(2)b =
�b + pbN![� + 

0
(N + 1)]

2(N * 1)!N2Pb
. (8.23)

8.2.3 Harmonic oscillator with coherent two-photon driving

A harmonic oscillator driven by a laser of N photons is described through Eq. (8.7), setting
Pd = 0 and changing the operator d for an operator a of a bosonic particle. For consistency in
the notations, here I label the intensity of the driving laser as ⌦a. For N = 2, the observables
can be found in closed form with standard methods, but for higher values of N the stimulated
emission of the laser into the harmonic oscillator makes the population of the latter diverge even
at very small driving intensities. Thus, in the rest of the section, I will restrict to the case N = 2.

The population of the harmonic oscillator is given by

na =
8⌦

2

a

�2a * 16⌦2

a
, (8.24)

giving the maximum driving intensity (before divergence of the population) is ⌦a = �a_4.
Furthermore, the emission spectrum is given by the superposition of two Lorentzians centered
at the frequency of the harmonic oscillator

Sa(!) =
1

4⇡⌦a

L

(�a_2)2 * 4⌦
2

a

(�a_2* 2⌦a)
2 +!2

*

(�a_2)2 * 4⌦
2

a

(�a_2 + 2⌦a)
2 +!2

M

, (8.25)

which is shown in Fig. 8.8(a) for three values of the intensity of the driving. Note that the
Lorentzian that enters into the spectrum as a subtraction is broader than the other one, thus the
tails of the emission line of the oscillator are thinner than they would be without the second
term in the right-hand side of Eq. (8.25).

The correlations from the two-photon driven cavity are given by

g(2)a (⌧) = 1 + e*�a⌧
LH

1 +

�2a
16⌦2

a

I

cosh
�

4⌦a⌧
�

+
�a
2⌦a

sinh
�

4⌦a⌧
�

M

, (8.26)
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Figure 8.8: (a) The emission spectrum of a harmonic oscillator driven by a two-photon laser is given by the
superposition of two Lorentzians (cf. Eq. (8.25)) and as the population of the cavity increases the linewidth
of the emission becomes narrower. (b) The correlation between photon pairs emitted by the harmonic
oscillator are always bunched, regardless of the intensity of the driving. Together with the second-order
correlation function between two-photon bundles, this is an indication of the bundling character of the
system.

which is always larger than 1 (or equal, in the limit of very large ⌧), as shown in Fig. 8.8(b).
Note that, while it is not apparent in Eq. (8.26), the intensity of the laser ⌦a cannot be taken
arbitrarily large, since the population diverges at a finite value (even though the correlation
does not). The correlations between two-photon bundles are also analytical but they are too
cumbersome to be written here. However, at zero-delay the correlation reduces to

g(2)
2 a(⌧ = 0) = 3

3�4a + 384�2a⌦
2

a + 2048⌦
4

a
�

�2a + 32⌦2

a
�2

, (8.27)

which is always larger than 9. Together with Eq. (8.26) the correlation between two-photon
bundles are a clear indicator that the system is bundling. A Monte Carlo simulation of the
emission of the cavity allows to obtain the probability distribution p(n) to observe n photons in
a time window T for the harmonic oscillator driven with an N-photon laser. Figure 8.9 show
the probability distribution for the cases N = 2 and N = 3 in Panels (a) and (b), respectively.
The zigzag shape on the two distributions are a consequence of the emission in bundles: if the
system emits only bundles of N photons, at any time window one will only see kN photons,
with k À N. Deviations from the perfect zigzag quantifies the purity. In both panels, the fit to
the distribution given in Eq. (8.2) is shown as a dashed red line. With the parameters of the fit I
find that the purity of the emission exceeds 98% in both cases. The fact that the fit to Eq. (8.4)
is not perfect means that some approximation fails, such as the no-correlation between single
photons and bundles, which indeed is not exact if one mechanism of single-photon production
is bundle-breaking, or the assumed Poissonian statistics. But overall, the agreement is excellent
qualitatively and also fairly good quantitatively, so one can accept the estimation this makes as
meaningful.

While most of the observables for the the coherent driving with two photons can be obtained
in a closed-form expression, for N = 3 the system cannot be expanded in manifolds of
excitations, and the expressions are not analytical (so one has to find the results numerically,
always checking for convergence). In fact, the Monte Carlo simulation done to obtain Fig. 8.9(b)
requires to excite the harmonic oscillator in the vanishing driving regime (⌦a_�a = 10

*2) and
still truncating the Hilbert space to a hundred particles. The reason for this behaviour is twofold:
as the excitation is done at the N-particle level while the decay remains at the single-particle
level, the harmonic oscillator quickly develops a condensate of particles which Purcell enhance
the emission from the (classical) source of excitations. Furthermore, as the source of excitation
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Figure 8.9: Purity of the two- and three-photon bundle emission from a cavity driven by an N-photon
laser. (a) The two-photon bundles are obtained simulating a harmonic oscillator governed by the master
equation (8.7) setting N = 2. At any time window T the probability to detect and odd number of photons
is highly suppressed. A Monte Carlo simulation of the emission allows to obtain a probability distribution
(shown in solid blue) which then can be fitted to Eq. (8.2) (shown in dashed red), from which I find a
two-photon purity of ⇡2 = 0.983. (b) Same as panel (a) but letting N = 3, finding a purity of ⇡3 = 0.981. In
both cases the linewidth of the harmonic oscillator was taken as the unit and the intensity of the driving
was chosen in such a way that the results are converged.

has an infinite reservoir of energy (as it is given by a c-number rather than by an operator), the
enhancement makes the population diverges even for the smallest driving intensity. Such an
effect also takes place when the excitation is done through a Lindblad term, as the rightmost
term in Eq. (8.7). However, in such a case the system diverges even for N = 2.

While the photon correlations between N-photons bundles emitted by the driven cavity are
always bunched, the bundles from both the coherently and incoherently driven N-level systems
have a wide range of possible statistics, depending on the intensity of the driving. Thus, the
latter are more appealing for applications in which the versatility of the bundle statistics is
critical, e.g., for schemes devoted for Quantum Spectroscopy, as mentioned in Chapter 7.

Considering that I have implemented three systems that behave like a Bundler, I summarize
their basis properties in Table 8.1. There as well, I introduce the names with which I will refer
to each system in the remaining of the Chapter.

Name Basic system Type of excitation Emission spectrum
Toy Bundler 1 (TB1) N-level system Coherent Given in Eq. (8.9)
Toy Bundler 2 (TB2) N-level system Incoherent Given in Eq. (8.18)
Toy Bundler 3 (TB3) Harmonic oscillator Coherent Given in Eq. (8.25)

Table 8.1: Summary of the toy models for the Bundler.

8.3 exciting a harmonic oscillator

Already in Chapter 5 we have seen the behaviour of a harmonic oscillator when it is driven
with the correlated photons emitted by the leapfrog processes of a Mollow triplet. These
results were shown in Fig. 5.7, and implied that the Bundler is not able to take the harmonic
oscillator into highly populated and antibunched states, but into states close to vacuum for
which the emission is scarce but highly correlated. Exciting a harmonic oscillator with the light
emitted by toy-Bundler is done mixing the master equation for a cascaded coupling, given in
Eq. (1.28), with the description of the source through the master equation of the toy model,
given in Eq. (8.7). In the following, I will use the annihilation operator c for the target harmonic
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oscillator, and its observables will be noted accordingly, e.g., its decay rate will be noted as �c
and its population nc .

8.3.1 Exciting with the Toy Bundler 1 and 2

The first question that we tackle regards the repetition rate of the emission and the efficiency
with which it drives the harmonic oscillator. Given that the source of quantum light is a three-
level system, and that because of that its population reaches a saturation, the repetition rate
of its emission is fundamentally truncated. Figure 8.10 shows the map of the population of
the harmonic oscillator as a function of the repetition rate of the source (the intensity of the
driving is the implicit variable) and the ratio between the linewidth of the harmonic oscillator
and of the three-level system. Note that the repetition rate of the 3LS is truncated at 1 when
the driving is done by a coherent source, while it is truncated at 4_3 when the driving is done
by an incoherent source. However, given the same linewidth of the harmonic oscillator, the
population is larger when it is driven with the coherent 3LS.

The emission spectrum of the source of the bundles is mapped onto the spectrum of the
harmonic oscillator, which in turn behaves as a frequency filter of the emission. Thus one
observes a transition from the exact structure of the photoluminescence of the source—obtained
in the limit in which the linewidth of the oscillator is much larger than the linewidth of the
NLS—to a single line of emission at the natural frequency of the harmonic oscillator. Doing a
spectral decomposition of the emission spectrum, one finds that when the emission is filtered
around a certain frequency, the contributions to the spectrum at other frequencies lose their
relevance as the linewidth of the harmonic oscillator becomes smaller.

The photon correlations on the target harmonic oscillator, both for pair of single photons and
pairs of two-photon bundles, are shown in Figure 8.11 for the case in which its linewidth is
equal to the the linewidth of the source. Panels (a, b) show the case in which the 3LS is driven
coherently, while panels (c, d) show the incoherent counterpart. The correlations are stronger
(especially the bunching) when the excitation is done coherently. Furthermore, all the figures
suggest that there are regions of excitation in which the emission of the harmonic oscillator
takes place as bundles rather than as individual photons.
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Figure 8.10: Population induced on a harmonic oscillator when it is excited by the Toy Bundler (a) 1
and (b) 2. The population of the target is optimized, in both cases, when the intensity of the driving is
either ⌦b_�b = 0.567 or Pb_�b = 0.567, and the linewidth of the target is well below the linewidth of the
source.
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Figure 8.11: Photon correlations of the
photons emitted by a harmonic oscilla-
tor driven by a three level system. (a,
b) Correlations between pairs of single
photons and between pairs of two-photon
bundles, respectively; for the case in
which the driving of the 3LS is done co-
herently. (c, d) Same as the upper row
for the case in which the excitation of
the 3LS is done incoherently. The fig-
ures were obtained using �b as the unit
and �c_�b = 1. In both rows, the regions
where the g(2)c (⌧) is bunched while the
g(2)
2 c (⌧) is antibunched suggests that the

emission from the harmonic oscillator is
done as two-photon bundles.
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As it is the case when exciting with quantum light, the target of the excitation inherits some
of the properties of the source. As such, the state of light imprinted on the target resembles
the state of light of the source. This is particularly notable in the Wigner function, shown in
Fig. 8.12, where I compare the phase-space distribution of the source and of the target for the
two types of excitation and for two intensities. The upper row shows the Wigner functions
for the parameters that maximize the probability to have a single photon in the harmonic

0 1 2-1-20 1 2-1-2
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0
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(c) (d)

Source Target
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(i) (ii)
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Figure 8.12: Wigner function for a harmonic oscillator driven by a three-level system, for two types of
excitation and two intensities of the driving: The panels show the cases in which the excitation is coherent
(a-d) and incoherent (i-iv). The upper row shows the case in which the probability of having a single
photon in the target is maximum, where one can appreciate the appearance of lobes in phase-space for the
coherent excitation. The bottom row shows the case in which the intensity of the excitation is very large.
For the figures, I used �b as the unit and set �c_�b = 1.
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oscillator: for the coherent excitation, panels (a) and (b), the distribution consists of two lobes
that blur on the target. For the incoherent excitation, the distribution for the source resembles
a torus, however in the harmonic oscillator the state remains a large portion of vacuum and
the distribution is roughly given by a Gaussian. The bottom row shows the cases in which the
excitation is very large. In this case, the state of the coherently driven 3LS becomes mixed and
the distribution (panel (c)) resembles the torus obtained for the incoherent excitation in panel (i).
In contrast, the Wigner function of the incoherently driven 3LS becomes negative around the
origin of the phase space, thus evidencing the quantum character of the state. In both cases, the
Wigner function of the target is dominated by the vacuum.

8.3.2 Exciting with the Toy Bundler 3

For the target, the observables are given by

nc =
8⌦

2

a

�2a * 16⌦2

a

�a(2�a + �c)
(�a + �c)2 * 16⌦2

a
=

na�a(2�a + �c)(1 + 2na)
(�a + �c)2(1 + 2na)* 2na�2a

, (8.28)

where in the rightmost term of Eq. (8.28), I eliminated the explicit dependence of the population
on the intensity of the driving and left it in terms of the population of the source (given in
Eq. (8.24)) and the decay rates. Furthermore, the emission spectrum of the target harmonic
oscillator is always given by the superposition of three Lorentzians centered at the natural
frequency of the harmonic oscillator

Sc(!) =
1

⇡
(�c_2)

(�c_2)2 +!2

2�a(�2a * 16⌦
2

a)

(2�a + �c)[(�a * �c)2 * 16⌦2

a]

+
1

⇡
�a_2 + 2⌦a

(�a_2 + 2⌦a)
2 +!2

�c(�a * 4⌦a)(�a + �c * 4⌦a)

8⌦a(2�a + �c)(�a * �c + 4⌦a)

*
1

⇡
�a_2* 2⌦a

(�a_2* 2⌦a)
2 +!2

�c(�a + 4⌦a)(�a + �c + 4⌦a)

8⌦a(2�a + �c)(�a * �c * 4⌦a)
. (8.29)

The oscillator is merely acting as a filter of the signal, and in the limit of �c_�a ô ÿ becomes
identical to the emission spectrum of the source, as expected. Figure 8.13(a) shows the population
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Figure 8.13: (a) Population induced in a harmonic oscillator when driven by the Toy Bundler 3. For a
fixed intensity of the Bundler, the population of the target is the largest in the region where its linewidth
is well below the linewidth of the bundler. (b) Emission spectra for the source and the target. The solid
blue line corresponds to the emission line of the source, which is given by Eq. (8.25). The orange lines
correspond to the emission from the target using �c_�a = 0.1 (solid) and �c_�a = 1 (dashed). In the limit in
which �c_�a ôÿ the emission spectrum of the target matches the spectrum from the source.
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Figure 8.14: Two-photon correlations g(2) induced by the Toy Bundler 3 operating in the regime of two-
photon bundles. (a) Correlations of the source, displaying bunching throughout all the diving intensities.
(b–d) Correlations of the target for �c_�b = 0.1, 1 and 10, respectively. In the limit in which the linewidth
of the target cavity is much larger than the linewidth of the source, the photon correlations of the target
match the correlations of the source.

of the harmonic oscillator as a function of the repetition rate of the Bundler and the ratio between
the linewidth of the oscillator and the cavity of the Bundler, while Fig. 8.13(b) shows the emission
spectrum of the source (solid blue line) and of the target (orange lines) for two linewidths of
the target, demonstrating that the tails of the emission from the cavity are trimmed in a process
akin to spectral filtering. The photon correlations of the target harmonic oscillator resemble
those of the source. In Fig. 8.14, I show the correlations of (a) the source and (b-d) the target
harmonic oscillator for various linewidths: as the linewidth of the target becomes small, the
correlation thermalizes and the structure is blurred. Furthermore, the photon correlations of
the target are also always bunched. Considering the state of the harmonic oscillator, I turn to
the Wigner function, shown in Fig. 8.15. In agreement with the fact that the source is always
bunched, the Wigner function is also always positive, and the target harmonic oscillator inherits
the classicality of the state (albeit with a larger dispersion in the phase space). In the case of very
intense excitation, the source harmonic oscillator becomes a squeezed state, which transpires to
the state of the target harmonic oscillator.

Figure 8.15: Wigner functions for the
source and the target at two regimes of
excitation. (a, b) show the case in which
the probability of having a single pho-
ton in the target is maximum, where one
can appreciate the appearance of lobes in
phase-space. (c, d) show the case in which
the excitation is very intense, the state of
light of the source is completely mixed
and the target is mostly in vacuum. The
former regime provides the antibunching
shown in Fig. 8.5(c). In all the cases, the
distribution has always non-negative val-
ues. For the figures I used �b as the unit
and set �c_�b = 1.
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Figure 8.16: Population induced on a two-level system when it is excited by the Toy Bundlers 1 (a & c)
and the Toy Bundler 2 (b & d) operating in the regime of two- (a & b) and three-photon emission (c & d).
In all the cases, the population of the target 2LS is less than 1_2 and it is optimized in the regime in which
its linewidth is well below the linewidth of the source.

8.4 exciting a two-level system

Exciting a two-level system with the light emitted by Toy Bundler is done mixing the master
equation for a cascaded coupling, given in Eq. (1.28), with the description of the source
through the master equation of the toy model, given in Eq. (8.7). In the following, I will use
the annihilation operator � for the target two-level system, and its observables will be noted
accordingly, e.g., its decay rate will be noted as �� and its population n� .

8.4.1 Exciting with the Toy Bundler 1 and 2

Considering the driving of a two-level system by a Bundler, one is interested in the efficiency of
the excitation. Thus, in this section I also consider the population of the two-level system as a
function of the intensity of the emission from the Bundler and the linewidth of the two-level
system. The results are shown in Fig. 8.16 for a three-level system driven coherently in panel (a)
and driven incoherently in panel (b). The maximum occupation of the target is obtained when
the NLS is itself driven incoherently. Note, however, that in all the cases the population of
the target 2LS is below 1/2, meaning that the excitation with the Bundler does not induce a
population inversion on the 2LS. As one can intuit, when the two- and three-photon Bundlers
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Figure 8.17: Two-photon corre-
lations g(2) of a two-level sys-
tem driven by a three-level sys-
tem, itself driven (a) coherently
and (b) incoherently. In the case
with the coherently driven 3LS
the correlations are enormous
in the regime of vanishing driv-
ing, in which the antibunching
(due to the fermionic character
of the two-level system) quickly
becomes bunched. In the oppo-
site regime, where the driving
laser is very intense, the emis-
sion from the two-level system
undergoes oscillations but main-
taining its antibunching charac-
ter. The figures were obtained
using �� = �b.
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emit with the same emission rate, the latter is more efficient to drive the optical target, inducing
in it a larger population.

The correlations between the photons emitted by the two-level system are shown in Fig. 8.17
for the coherently driven 3LS in panel (a) and for the incoherently driven 3LS in panel (b). Due
to the fermionic character of the two-level system, without filtering one cannot possibly observe
photon bundles and therefore the correlation between bundles is not defined. In Fig. 8.17 it
is interesting that in the regime in which the three-level system is driven weakly, the photon
correlations of the target quickly go from antibunching to bunching (in the case of the coherent
excitation, the correlations become superbunched). In the opposite regime, with large intensity
of the excitation, one observes oscillations in the correlations for the coherent excitation, which
are a consequence of Rabi oscillations in the source, and which notably always remain below 1.
Note than in the case of incoherent driving, in contrast with the case of classical excitation, the
coherent time of the correlations are not broadened by the excitation rate, which is a result of
the target being driven by a Bundler with its own statistics and finite linewidth rather than by
an infinitely broad thermal reservoir. Similarly to the case of the coherently driven Bundler, in
the limit of small intensity the photon correlations of the target two-level system evolve from
the perfect antibunching to bunching in a few lifetimes of the emitter; however, the maximum
correlation obtained in this configuration is below 2. Furthermore, because the population of
the target 2LS is never larger than 1/2, then the vacuum state is always dominant over the
Fock state with one photon, which implies that regardless of the type of excitation, the Wigner
function of the target 2LS is always completely positive.

The energy structure of the target two-level system is permeated by the transitions made
available by the source of photon bundles. Such a structure can be obtained through the
eigenvalues of the Liouvillian matrix describing the system, as I presented in Chapter 6,
decomposing the emission spectrum of the 2LS in terms of Lorentzians with amplitude Lp and
dispersive components with amplitude Kp, as in Eq. (6.13). In Figure 8.18, I present the spectral
decomposition of the emission spectra of the target 2LS highlighting the central frequencies of
the Lorentzians that contribute to the emission spectrum: those that contribute with a positive
sign (emission lines) are shown in blue, while those that contribute with a negative sign
(absorption lines) are shown in red. The opacity of the color encodes the ratio of the amplitude
of the Lorentzian normalized to its linewidth, namely the value Lp_�p. The panels marked with
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Figure 8.18: Spectral decomposition of the driven two-level system as a function of the intensity of the
driving and for several linewidths of the target. (a-i) Show the cases for the excitation with two-photon
bundles, and (A-I) show the cases for the excitation with three-photon bundles. The panels on the right
(i–iii and iv–vi) show the emission spectra and its decomposition from various linewidths of the target
two-level system, when it is driven by two- and three-photon bundles. The parameters for which the
spectrum is computed are shown as green lines in the panels showing the Total Energy Spectrum.
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Figure 8.19: Two-photon spectrum of a two-level system driven by a three-photon bundler. (a) Low
excitation regime in which the emission spectrum is given by a single line and the structure of the 2PS is
simply the strong correlations between the photons emitted at symmetric frequencies around the central
line of emission, and antibunching elsewhere. (b) High excitation regime in which the emission spectrum
of the 2LS is as shown in Fig. 8.18vi, which resembles the Mollow triplet. In this case there are also three
anti-diagonal of bunching related to the energy dressing of the system, in analogy with the 2LS driven by
a classical laser. In fact, the equation describing these three lines, given in Eq. (8.31), is exactly the same as
for the 2LS driven by a classical source (cf. Fig. 1.15).

lowercase letters (a–i) and uppercase letters (A–I) correspond to the two-level system driven
by a two- or a three-photon Bundler, respectively. The various rows of the panels show three
representative ratios between the linewidth of the two-level system and the N-photon Bundler,
i.e., ��_�b = 0.1, 1 and 10. While it is expected that the emission spectrum of the bundler is
mapped into the spectrum of the target (which is shown in Fig. 8.4), it is notable that the
two-level system becomes dressed when it is driven by the Bundler. In fact, when the linewidth
of the target is larger than the linewidth of the bundler, the dressing becomes apparent from
the emission spectrum, with the appearance of satellite peaks at frequencies different form the
natural frequency of the two-level system. The emission spectra are shown in Fig. 8.18(i–vi), and
while in all the figures the dressing is evident from the decomposition, in panels iii and vi the
splitting of the peaks makes it obvious to the naked eye. In comparison with the excitation with
the Mollow triplet, the excitation with a N-photon Bundler provides a richer energy structure,
with a more complex layout of available transitions. Note that the intensity of the excitation at
which the energies start to split (around ⌦b_�b Ì 0.1) is smaller when the 2LS is driven with the
Bundlers than when it is driven by the Mollow triplet (shown as dashed gray lines in all the
panels of Fig. 8.18).

The emission spectrum of the target 2LS when driven by a three-photon Bundler, shown
in Fig. 8.18vi, resembles a Mollow triplet, albeit with some shoulders flanking the satellite
peaks. As such, it becomes interesting to consider the two-photon spectrum of the emission, to
investigate whether it provides a landscape of correlations similar to that from the classically
driven 2LS, as shown in Fig. 1.15(b). For completeness, I also consider a case in which the
intensity of the driving is such that the emission spectrum of the two-level system is given by a
single line, namely ⌦b = �b. In this case, the two-photon spectrum, shown in Fig. 8.19(a), consists
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of a field of antibunching modified by strong bunching between photon pairs of frequencies !
1

and !
2

satisfying
(!

1
* 3!

L
) + (!

2
* 3!

L
) = 0 , (8.30)

where !
L

is the frequency of the driving laser and where the central line of emission is centered
at the frequency ! = 3!

L
. Increasing the intensity of the driving to ⌦b = 4�b, the two-photon

correlation of the emission becomes more involved. It is shown in Fig. 8.19(b), and indeed it
has a clear resemblance to the 2PS of the classically driven two-level system. In particular, the
landscape include a triplet of bunching lines, highlighted as dashed gray lines) satisfying

(!
1
* 3!

L
) + (!

2
* 3!

L
) = 2�⌦b , with � = {*1, 0, 1} , (8.31)

which are the same equations satisfied by the bunching lines that appear in the 2PS of the
classically driven two-level system. As in that case, the lines that yield the superbunching are
the results of the emission of photons involving a transition through a virtual state. In particular,
the photon pairs with frequencies

!
1
= !

2
= 3!

L
±⌦� , (8.32)

that is, the photons emitted from the frequency between the central and the satellite peaks,
are bunched and can be considered another set of leapfrog processes, introduced in Chapter 1.
While a full study of the light emitted by a two-level system driven by a three-photon Bundler
is interesting and most certainly will provide interesting effects, it lies beyond the scope of this
Chapter and I leave it for future works.

8.5 conclusions

In this chapter, I have presented the excitation of a harmonic oscillator and a two-level system
by a Bundler. Given the computational complexity of simulating the real device, I implemented
toy-models that provide a similar type of emission without the intricate underlying structure. I
considered three models: a N-level system or a harmonic oscillator themselves driven either
coherently or incoherently by classical sources providing their photons uniquely in groups of
two, three or four photons. I showed that the emission from the three toy models consists of
photon bundles with a purity higher than 99%, and depending on the intensity of the classical
excitation, the statistics of the bundles can be tuned from antibunched to superbunching,
thus becoming prospective sources with which one can consider Quantum Spectroscopy.
Furthermore, I showed that a two-level system driven by a Bundler becomes dressed and
its photons are then emitted with a spectral shape that resembles the Mollow triplet.
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C O N C L U S I O N S

La sabiduría nos llega cuando ya no nos sirve de nada.

— Gabriel García Márquez

9.1 english

In this Thesis, I have tackled the problem of exciting optical targets with Quantum Light. To
do so, I was first called to describe various sources of Quantum Light, which provide their
emission either as single-photons or as N-photon bundles, and then I have used them to excite
the most fundamental systems: a harmonic oscillator (the archetype of bosonic particles), a
two-level system (the prototype of fermionic particles) and polaritons (particles that arise from
the strong coupling between a boson and a fermion). The main results of my work can be
summarized as follows.

The desiderata for a single-photon source comprises a very extensive list, although some of the
most wanted characteristics for a such a source are its ability to suppress multi-photon emission,
to provide indistinguishable photons, and to have a high repetition rate (here assuming the CW
scenario; emission on demand is also highly sought for applications). While many experimental
groups are striving to optimize the behaviour of this type of sources, they also neglect a key
fact of quantum mechanics: the observation. I have shown that when the detection of the light
is taken into account self-consistently, some single-photon sources behave in unexpected ways.
The resolution in frequency that one gains by filtering the emission induces an indeterminacy
in the time at which the photons are detected. Filtering the light emitted by a two-level system
spoils its perfect antibunching. Thus, a criterion to identify single-photon sources, and classify
their performance regarding multi-photon emission, has to involve the effect of detection.
As such, I have proposed a criterion—the N-norm—which quantifies how well the photon
correlations are suppressed to all orders (instead of only to order two, g(2) ~ 1, which is
what is typically considered), and shown its application to various mechanisms that provide
antibunched light. Using this, I have shown that a two-level system driven coherently is the
best single-photon source when one considers classical excitation only. However, I have also
shown that using the emission of such a two-level system to excite yet another two-level system
enhances the single-photon character of the emitted light. Furthermore, I have tackled the
problem of a two-level system driven by a weak laser into the Heitler regime. While several
experimental groups have claimed that in such a system the emission is monochromatic and
antibunched, one finds that the two properties do not coexist when considering their detection
simultaneously. However, I have shown that one can overcome the negative effect of filtering by
making an interference of the emitted light with a coherent field. Performing the interference
in an adequate manner, one can restore the lost antibunching even when filtering below the
natural linewidth of the two-level system.

Using the fact that filtering the emission from a single-photon source spoils the correlations
between photons, thus making it possible for the source to emit more that one photon at the
same time, I turned to sources of N photons. In particular, I focused on the light emitted from
resonance fluorescence in the Mollow triplet regime. Building onto the proposal of Sánchez
Muñoz et al. (2014a) for a source of N-photon bundles, I considered the correlations between
single photons emitted at a given frequency !

1
and N-photon bundles emitted at another

frequency !
2
. I presented a systematic analysis of these correlations, considering all the possible

configurations for N = 2, thus finding the frequencies !
1

and !
2

that maximize the correlations.
Increasing the number of photons involved in the scheme also expands the amount of possible
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configurations in which the photons can be emitted. As particular cases, I also considered the
processes involving four photons (the general case involving N photons can also be tackled, but
at this stage it does not bring much to the discussion): this opens the prospect of a two-photon
bundle heralding another two-photon bundle, or a single photon heralding the emission of a
three-photon bundle. In both cases, I show the particular set of frequencies that maximize the
correlations and therefore the heralding process. This paves the way towards the development
of an efficient source of heralded N-photon bundles.

The temporal scrambling that a filter or a detector has on light cannot be assessed through
the density matrix formalism, as is consists of an statistical average over many realizations,
which wash out the variations in the detection times from the individual quantum trajectories.
Instead, I turned to the Quantum Monte Carlo technique introduced by Mølmer, Castin, and
Dalibard (1993) and upgraded it to account for the detection process. This provides a very
visual and powerful way to look at photon correlations, which can simulate a “quantum
photoluminescence” spectrum through the direct detection of its individual photons, by placing
various detectors at the corresponding frequencies, or by spanning one unique detector (but
then losing the ability to access cross-correlations). In doing so, I verified the reality of the
photon correlations obtained through del Valle et al. (2012)’s Theory of Frequency-filtered and Time-
resolved Correlations, in particular by evidencing explicitly the leapfrog processes by observing
their concomitant photon bundles, which are unambiguously collected as bursts of clicks
in the Monte Carlo simulation. This tool becomes particularly important for the design of
heralded N-photon sources.

After considering the sources of Quantum Light, I discussed their effect on fundamental
optical targets, namely a harmonic oscillator, a two-level system and weakly interacting bosonic
particles (polaritons). I established the ways in which it was advantageous for these targets to
be excited with quantum rather than classical light. While the Hilbert space of the two-level
system is finite and can be readily mapped through the Bloch sphere, the counterpart for
the harmonic oscillator is infinite and there is not a standard map to chart the regions of
the Hilbert space that are accessible to the harmonic oscillator. I showed that a way to chart
such a space is to consider the mean occupation of the harmonic oscillator and the N-order
correlations among the photons emitted by it. Already in this case, I showed that there is a
fundamental limit, beyond which no states of the harmonic oscillator are allowed. The states at
the boundary are given by a superposition of two Fock states of consecutive number of photons,
which are the generalization of Fock states to non-integer mean population. Using the photon
correlations and the mean population as charting rulers, I was able to determine the region of
the Hilbert space that the harmonic oscillator can access when it is excited, and then to show
the gain that one obtains with the light emitted by a two-level system. In particular, I have
shown that there is a large region of the Hilbert space of the harmonic oscillator for which
the mean population lies between one and two, while the second-order correlation function
lies below 1/2. This observation implies that the commonly used criterion that claims that
whenever the photon correlation of the emitted light satisfies g(2) < 1_2, then the light has been
emitted by a single-photon source, is mistaken. Regarding the two-level system as a target,
I have shown that exciting it with classical light already lets it access all its Hilbert space,
and therefore there is no advantage in using Quantum Light. However, I proceeded to study
systematically the question of strong coupling between the source of quantum light and the
driven two-level system, increasing the level of complexity of the driven mechanism. Namely,
starting with a two-level system driven by a thermal reservoir, or a laser (driving it into the
Heitler or the Mollow regime), then considering a cavity under either incoherent or coherent
excitation, and finishing with a one-atom laser as the most realistic model for a classical source
of light. With these sources, I showed the various regimes in which the target two-level system
is dressed and how the rich structure of energy transitions is weighted. Finally, I have shown
that the single-photon character of the two-level system can be enhanced when it is excited
with antibunched light: the value of the filtered photon correlations are reduced as compared
to what one would obtain when exiting the two-level system classically.
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Afterwards, I considered the excitation of weakly interacting particles, taking as an example
exciton-polaritons. I showed that the emission from a Mollow triplet, with its rich underlying
structure, can be used as a versatile source of Quantum Light providing light with all types of
statistical properties, depending on the frequency at which one collects it. Sweeping the Mollow
triplet around the resonance frequency of polaritons, I showed that the latter accommodates the
properties of the emitted light, i.e., the triplet structure is mapped onto the populations, and
the statistical properties of the light are transposed to the photon correlations of the polaritons,
which also vary across frequencies. While the population is symmetric with respect to the
resonance frequency of the polariton, the photon correlations display a slight asymmetry due
to the interacting character of the polaritons. I have shown that such an asymmetry, which
can be quantified and extracted through a convolution of the photon correlations, is directly
proportional to the interaction strength of the polaritons, thus rendering the excitation with the
Mollow triplet a novel spectroscopic technique, that I have named “Mollow Spectroscopy” and
which can be applied to a wide range of systems of interacting particles.

The state-of-the-art polariton samples are still not ready to interface with quantum dots,
and therefore the spectroscopic technique cannot be implemented yet. However, they can
be coupled to single photons emitted by, e.g., nonlinear crystals emitting pairs of entangled
photons. Sending one of these entangled photons onto the polariton sample, letting it evolve
in the cavity until its eventual re-emission, and then measuring the correlations between the
photon emitted by the cavity and the other entangled photon, we were able to demonstrate
with the experimental group of D. Sanvitto in Lecce the generation of a genuine quantum
states of the polariton field for the first time, and to show that, despite their highly dissipative
character, polaritons are suitable to maintain quantum correlations. Furthermore, sending the
single photon to the polariton sample already containing a condensate of particles, I showed
that the number of polaritons in the condensate and the interaction among them allows to
shift the phase of the photon that goes through the cavity, while still maintaining the quantum
correlations. Thus, I have demonstrated that polaritons are, in principle, a suitable platform for
the development of quantum technologies leading towards the implementation of a quantum
computer.

In the last chapter, I brought together several of the ideas developed during the thesis, to
culminate with the excitation of optical targets with the richly structured output of a bundler.
To do so, I first revisited the concept of bundle-purity in the emission and developed various
toy-models, showing how they can easily provide essentially pure N-photon emission. I have
studied in details the states of the optical targets driven by such sources, from both their
quantum steady-state point of view as well as from their photoluminescence and photon
correlations. I have found interesting variations of resonance fluorescence in the form of new
types of “Mollow triplets”, which are not triplets anymore.

In conclusion, this work gives a snapshot of how the concept of frequency-correlations, that
emerged in the late 70s, can be regarded as central in photonics, from both the point of view of
the generation and detection of light, and how this problematic becomes naturally united under
the umbrella of exciting with quantum light. The comprehensive mapping in hypervolumes of
photon correlations that I have given of resonance fluorescence—the drosophila of quantum
optics—as well as the highly visual representation afforded by the frequency-resolved Monte
Carlo technique which I have developed, are only preliminary theoretical insights of what the
optics of tomorrow—that of multiphoton physics—may look like. Then it will be commonplace
to have quantum buses carry correlated bundles harvested from heralded-bundlers to power
quantum circuits, quantum computers and quantum networks.

9.2 español

En esta Tesis abordé el problema de excitar objetivos ópticos mediante Luz Cuántica. Para hacer
esto, primero tuve que describir varios tipos de fuentes de Luz Cuántica, los cuales proveen su
emisión o como fotones individuales o como paquetes de N fotones, y luego los he usado para
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excitar los sistemas más fundamentales: un oscilador armónico (el arquetipo de las partículas
bosónicas) un sistema de dos niveles (el prototipo de las partículas fermionicas) y polaritones
(partículas que se originan del acoplo fuerte entre un bosón y un fermión). Los resultados
principales de mi trabajo se pueden resumir de la siguiente manera.

La lista de propiedades que quisieramos que tuviera una fuente de fotones individuales es
muy larga. Sin embargo, algunas de las características más buscadas son su habilidad para
suprimir la emisión de multiples fotones, para proveer fotones indistinguibles, y que tengan
una tasa de repeticion alta (asumiendo el caso de excitación continua; auqnue la emisión por
demanda también es bastante buscada para las apliaciones). Mientras que muchos grupos
experimentales están esforzando para optimizar el comportamiento de este tipo de fuentes, ellos
también omiten un punto fundamental de la mecánica cuántica: la observación. He mostrado
que cuando la detección de la luz es tenida en cuenta de manera auto-consistente, algunas
de las fuentes de fotones individuales se comportan de maneras inesperadas. La resolución
en frecuencia que se gana al filtrar la emisión induce una indeterminación en el tiempo en
el que dichos fotones han sido detectados. Al filtrar la emisión de un sistema de dos niveles,
se estropea su perfecto anti-agrupamiento. Así, un criterio para identificar fuentes de fotones
individuales, y para clasificar su desempeño en relación con la supresión de la emisión de
multiples fotones, tiene que incluir el efecto de la detección. De esta manera, he propuesto
un criterio—la norma-N—la cual cuantifica que tanto se suprimen las correlaciones entre
fotones a todos los órdenes (en lugar de considerar simplemente el segundo orden, g(2) ~ 1,
que es el criterio usado comúnmente), y he mostrado su aplicación a varios mecanismos que
proporcionan luz anti-agrupada. Usando este criterio, he mostrado que un sistema de dos
niveles excitado coherentemente es la mejor fuente de fotones individuales que se puede
obtener considerando únicamente la excitación clásica. Sin embargo, también he mostrado que
usando la emisión de dicho sistema de dos niveles para excitar otro sistema de dos niveles
mejora la calidad de los fotones individuales de la luz emitida. Por otra parte, he considerado
el problema de un sistema de dos niveles excitado débilmente por un laser, entrando así en
el régimen de Heitler. A pesar de que varios grupos experimentales han afirmado que la
emisión de uno de estos sistemas es monocromática y anti-agrupada, es fácil ver que estas dos
propiedades no coexisten cuando se considera la detección. Sin embargo, he mostrado que el
efecto negativo de la detección se puede superar haciendo una interferencia entre la luz emitida
y un campo coherente. Haciendo la interferencia de la manera adecuada se puede reestablecer
el anti-agrupamiento perdido, incluso luego de filtrar en un rango menor al ancho de banda
natural del sistema de dos niveles.

Usando el hecho de que filtrar la emisión de una fuente de fotones individuales dañan las
correlaciones entre los fotones, haciendo posible que estas fuentes emitan más de un fotón a
la vez, puse mi atneción en las fuentes de N fotones. En particular, me concentré en la luz
emitida por la fluorescencia resonante en el régimen de Mollow. Elaborando sobre la propuesta
de Sánchez Muñoz et al. (2014a) para una fuente de paquetes de N fotones, consideré las
correlaciones entre fotones individuales emitidos a una frecuencia !

1
y un paquete de N fotones

a otra frecuencia !
2
. Presenté un análisis sistemático de estas correlaciones, considerando todas

las posibles configuraciones para N = 2, encontrando así las frecuencias !
1

y !
2

que maximizan
las correlaciones. Al aumentar el número de fotones involucrados en el esquema también
expande el número de configuraciones en las que los fotones pueden ser emitidos. Como casos
particulares, también consideré los procesos que relacionan cuatro fotones (el caso general para
N fotones también se puede abordar, pero en este punto no son útiles para la discusión): esto
permite pensar en un paquete de dos fotones anunciando la emisión de otro paquete de dos
fotones, o en un fotón individual anunciando la emisión de un paquete de tres fotones. En
ambos casos, mostré el grupo de frecuencias que maximiza las correlaciones y el proceso de
anunciamiento. Esto cementa las fundaciones para el desarrollo de fuentes eficiente de paquetes
de N fotones anunciados.

El reacomodamiento en la estructura temporal que un filtro o un detector imparte dobre
la luz no se puede evaluar mendiate el formalismo de la matriz densidad, pues este consiste
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en un promedio estadístico sobre muchas realizaciones, el cual difumina las variaciones en
los tiempos de detecciones de las trayectorias cuánticas individuales. En cambio, consideré
la técnica de Monte Carlo Cuántico introducida por Mølmer, Castin, and Dalibard (1993),
y la mejoré incluyendo en ella el proceso de detección. Esto nos brinda un a herramienta
visual y muy potente para abordar las correlaciones entre fotones, mediante la cual se puede
simular el espectro de “luminiscencia cuántica” a través de la detección de fotones individuales,
ubicando varios detectores a las frecuencias correspondientes, o moviendo un único detector
(pero entonces perdiendo la posibilidad de acceder a las correlaciones cruzadas). Al hacer esto,
verifiqué la veracidad de las correlaciones obtenidas por la Teoría de Correlaciones filtradas en
frecuencia y resueltas en tiempo de del Valle et al. (2012), en particular evidenciando de manera
explícita los “leapfrogs” al observar la emisión de pares de fotones concomitantes, los cuales
son detectados de manera inequívoca como ráfagas de clicks en la simulación Monte Carlo. Esta
herramienta es particularmente importante para el diseño de fuentes de N fotones anunciados.

Después de considerar las fuentes de Luz Cuántica, discutí su efecto en objetivos ópticos
fundamentales: un oscilador armónico, un sistema de dos niveles y partículas bosónicas
levemente interactuantes (polaritones). Establecí las maneras en las que resulta ventajoso para
estos objetivos el ser excitados por luz cuántica en vez de luz clásica. Mientas que el espacio
de Hilbert del sistema de dos niveles es finito y puede mapearse fácilmente en la esfera de
Bloch, la contraparte para el oscilador armónico es infinito y no hay una manera estándar de
trazar las regiones del espacio de Hilbert que pueden ser accedidas por el oscilador armónico.
Mostré que una manera de mapear este espacio es considerar la ocupación media y la función
de correlación de orden N de los fotones emitidos por el oscilador. Incluso en este caso mostré
que hay un límite fundamental, más allá del cual no hay estados accesibles por el oscilador.
Los estados en la frontera están dados por una superposición de estados de Fock con número
de fotones consecutivos, los cuales proveen la generalización de los estados de Fock para
ocupaciones medias dadas por números no enteros. Usando las funciones de correlación y la
población media como medidas del mapa, pude determinar las regiones del espacio de Hilbert
que el oscilador armónico puede acceder al ser excitado, y luego mostrar la ganancia que se
obtiene cuando la excitación se hace con un sistema de dos niveles. En particular, mostré que
hay una región enorme del espacio de Hilbert del oscilador armónico en el que la ocupación
media es entre uno y dos, mientras que la función de correlación de segundo orden es menor
que 1_2. Esta observación implica que el criterio ampliamente usado, que afirma que cuando
las correlaciones entre fotones satisfacen la condición g(2) < 1_2, entonces la luz ha sido emitida
por una fuente de fotones individuales, es equivocado. Con relación al sistema de dos niveles
como objetivo, he mostrado que excitándolo mediante luz clásica ya lo deja acceder todo el
espacio de Hilbert, de manera que en este aspecto no hay ninguna ganancia al usar luz cuántica.
Sin embargo, procedí a estudiar sistemáticamente el problema del acoplo fuerte entre la fuente
de luz cuántica y el sistema de dos niveles bajo excitación, aumentando progresivamente la
complejidad del mecanismo de excitación. Así, comencé por un sistema de dos niveles excitado
por un reservorio térmico o un laser (haciéndolo entrar ya sea en el régimen de Heitler o de
Mollow), luego consideré una cavidad bajo excitación coherente o incoherente, y terminé con
el laser de un átomo como el modelo más realista de una fuente de luz clásica. Con estas
fuentes, mostré los varios regímenes en los que el sistema de dos niveles puede ser vestido y
como la rica estructura energética es pesada. Finalmente, mostré que la calidad de los fotones
individuales emitidos por un sistema de dos niveles aumenta cuando este último es excitado
mediante luz anti-agrupada: el valor de las correlaciones filtradas es reducido a comparación
del que se obtendría al excitar el sistema de dos niveles clásicamente.

Luego, consideré la excitación de partículas levemente interactuantes, usando como ejemplo
los polaritones excitónicos. Mostré que la emisión de un triplete de Mollow, con su rica estructura
subyacente, puede ser usada como una fuente versátil de luz cuántica capaz de proveer todos los
tipos de propiedades estadísticas, dependiendo de la frecuencia a las que se observe. Barriendo
el triplete de Mollow alrededor de la frecuencia de resonancia de los polaritones, mostré que
este último toma las propiedades de la luz emitida, i.e., la estructura del triplete es mapeada en
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la población, y las propiedades estadísticas de la luz emitida se transmiten a las correlaciones
entre los polaritones, las cuales también cambian con la frecuencia. Mientras que la población es
simétrica con respecto a la frecuencia de los polaritones, las correlaciones tienen una pequeña
asimetría debida a la interacción entre polaritones. Mostré que esta asimetría, que puede
ser cuantificada y extraída mediante una convolución de las correlaciones, es directamente
proporcional a la fuerza de la interacción de los polaritones, lo cual convierte a la excitación con
el triplete de Mollow en una técnica espectroscópica, la cual he denominado “espectroscopía de
Mollow” y la cual puede aplicarse a una gran variedad de sistemas de partículas interactuantes.

Las muestras de polaritones más avanzadas aún no están preparadas para ser acopladas con
puntos cuánticos, y por lo tanto la técnica espectroscópica no puede ser implementada todavía.
Sin embargo, ellas pueden ser acopladas con fotones individuales emitidos por, e.g., cristales no-
lineales que emiten pares de fotones entrelazados. Enviando uno de estos fotones a la muestra de
polaritones, dejándolo evolucionar dentro de la cavidad hasta que eventualmente es re-emitido,
y luego midiendo las correlaciones entre este fotón y el otro fotón entrelazado, fuimos capaces
de demostrar con el grupo experimental de D. Sanvitto en Lecce la generació de un estado
geniunamente cuántico del campo de polaritones por primera vez, y mostamos que a pesar de su
carácter disipativo, los polaritones son idóneos para mantener correlaciones cuánticas. Además,
enviando el fotón individual a una muestra de polaritones que ya albergaba un condensado de
partículas, mostré que el número de polaritones en el condensado y la interacción entre ellos
permite rotar la fase del fotón que atraviesa la cavidad, a la vez que mantiene las correlaciones
cuánticas. Así, he demostrado que los polaritones son, en principio, una plataforma adecuada
para el desarrollo de tecnologías cuánticas que lleven a la implementación de un computador
cuántico.

En el último capítulo puse en conjunto varias de las ideas desarrolladas durante la tesis, para
culminar con la excitación de objetivos ópticos por la emisión ricamente estructurada de un
Bundler. Para hacerlo, primero revisité el concepto de la pureza de la emisión de un Bundler y
desarrollé varios modelos sencillos, mostrando lo sencillo que es tener emisión de paquetes de
N fotones con alta pureza. Estudié detalladamente los estados de los objetivos ópticos a los que
se pueden acceder mediante la excitación por el Bundler, considerando el estado estacionario,
su espectro de emisión y las correlaciones entre fotones. Así, encontré variaciones interesantes
de la fluorescencia resonante que dan lugar a nuevos tipos de “tripletes de Mollow” que ya no
son tripletes.

En conclusión, este trabajo da una imagen de como el concepto de las correlaciones en
frecuencia, que emergieron a finales de los 70s, se pueden considerar centrales en la fotónica,
tanto desde el punto de vista de la generación como de la detección, y de como esta problemática
se recoge naturalmente bajo el paraguas de la excitación con luz cuántica. El mapeo exhaustivo
en hiper-volúmenes de las correlaciones entre fotones que he mostrado para la fluorescencia
resonante—la Drosophila de la óptica cuántica—así como la representación visual proporcionada
por la técnica de Monte Carlo cuántico que he desarrollado, son solo los primeros bosquejos
teóricos que indican como podrá lucir la óptica del mañana—aquella que involucra la física de
múltiples fotones—. Luego, será cotidiano tener autobuses cuánticos transportando paquetes
correlacionados de fotones, recogidos de Bundlers anunciados, para así alimentar circuitos
cuánticos, computadores cuánticos y redes cuánticas.
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a.1 observables and the quantum regression theorem

a.1.1 The Liouvillian and the Steady-state

The Master equation (1.20) is a first order differential equation, which can always be written in
a matrix form:

)t í⇢ = L í⇢ , (A.1)

where í⇢ is the vector representation of the density matrix ⇢ and L is the Liouvillian associated to
the Master equation under consideration. Formally, the solution to the Eq. (A.1) is obtained by
direct integration

í⇢(t) = exp

4

 

t

0

L dt
5

í⇢
0
, (A.2)

where í⇢
0

is the density matrix at the initial time, and we have not made any assumptions
regarding the temporal dependence of the Liouvillian. Once the state of the system is known as
a function of time, we have all the information about it. In particular, we can obtain the mean
value of any operator of the system, which is given by the average of the operator weighted by
the density matrix. Thus, if ÇO is an operator of the system, its mean value due to the dynamics
induced by the Master equation (A.1) will be given by

Í

ÇOÎ(t) = Tr
� ÇO⇢(t)

�

, (A.3)

where ⇢(t) is the density matrix of Eq. (A.2) in its matrix representation. The description of
the state of the system as a function of time is specially relevant when the transient state is
important, as is the case when excitation of the system also depends on time, e.g., when the
driving is pulsed. Conversely, when the excitation is done through a continuous wave, the
Master equation (1.20) takes the state into a unique and non-trivial (non-vacuum) steady-state.
Such a state becomes independent of the time, and therefore it follows the equation

Lí⇢ = 0 , (A.4)

which becomes an algebraic problem of finding a non-trivial solution for í⇢. The solution to
Eq. (A.4) is given by some density matrix ⇢

ss
, with which the mean value of the operators of the

system become independent of the time

Í

ÇOÎ = Tr
� ÇO⇢

ss

�

, (A.5)

where the mean value Í�Î has no dependence on the time, thus indicating that it is taken on the
steady-state. From an experimental point of view, the relevant mean values are those that are
observable, namely, those that correspond to hermitian operators for which the mean values are
real-valued. For instance, we will use repeatedly observables such as the population of a field
and its second-order correlation function, defined as in Eq. (1.32).

a.1.2 Quantum Regression Theorem

The solution of the Master equation gives us all the information about the system. In particular,
computing the steady-state of the system, one is able to obtain time-independent mean values
for any operator of the system. However, with the formalism descried so far, we are not able to
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evaluate correlations involving two times. In particular, the first- and second-order correlation
functions of the field

G(1)
(t, t+ ⌧) ◊ Ía†(t)a(t+ ⌧)Î , (A.6a)

G(2)
(t, t+ ⌧) ◊ Ía†(t)a†(t+ ⌧)a(t+ ⌧)a(t)Î , (A.6b)

are specially important, as they are related to the emission spectrum and the photon statistics of
the emission, respectively. The method to compute the correlations of the type of Eq. (A.6) was
found by Lax (1963) and Lax (1967) and it is known as the Quantum Regression formula. In his
book, Carmichael (2008) demonstrates that the two-times correlations can be obtained directly
from the density matrix at some time t and the Liouvillian that generates the dynamics as

Í

ÇO
1
(t+ ⌧) ÇO

2
(t)Î = Tr

� ÇO
1
(0)eL⌧ [ ÇO

2
(0)⇢(t)]

�

, (A.7a)

Í

ÇO
1
(t) ÇO

2
(t+ ⌧)Î = Tr

� ÇO
2
(0)eL⌧ [⇢(t) ÇO

1
(0)]

�

, (A.7b)

Í

ÇO
1
(t) ÇO

2
(t+ ⌧) ÇO

3
(t)Î = Tr

� ÇO
2
(0)eL⌧ [ ÇO

3
⇢(t) ÇO

1
]
�

, (A.7c)

where ÇOj are operators of the system, with j = 1, 2, 3, and in all cases we have taken ⌧ g 0. In
the steady-state, the dependence on the time t vanishes and we are left with correlations that
depend solely on the time-delay ⌧.

The method described above is particularly useful when one looks for numerical results,
rather than for analytical expressions, and when the dimensions of the Liouvillian are not
so large as to make the calculation of its exponential intractable. An alternative approach to
compute the correlations consists on searching a full set of operators that contains the dynamics
of the correlator of interest. Oftentimes, the dimension of such a set of operators is smaller
than the dimensions of the Liouvillian. Following the steps of Carmichael (2008) we start with
assuming that for any arbitrary operator ÇO there exists a set of operators { ÇA�} such that

Tr
⌅ ÇA�(L ÇO)

⇧

=

…

�
M��Tr( ÇA� ÇO) , (A.8)

where M�� are constants. The equation above implies, in particular, that the temporal dynamics
of the set of operators { ÇA�} is given by a reduced matrix, to which we will refer as the regression
matrix, with a smaller dimension than th Hilbert space:

)tÍ ÇA�Î =
…

�
M�� ÇA� . (A.9)

This relation can be written in a matrix form as

)t íA =M íA (A.10)

where íA = ( ÇA
1
, ÇA

2
,5)

T . Then, using the results from Eq. (A.7), we find that the two-times
correlators follow the differential equation (now for the delay ⌧ instead of the time t)

)⌧Í ÇO(t) ÇA�(t+ ⌧)Î =
…

�
M��Í ÇO(t) ÇA�(t+ ⌧)Î , (A.11)

which in matrix form reads

)⌧Í ÇO(t) íA(t+ ⌧)Î =MÍ

ÇO(t) íA(t+ ⌧)Î , (A.12)

where the matrix M is the same that generates the t-dynamics of the set of operators { ÇA�}, as
shown in Eq. (A.10). Analogously, it is easy to show that the two-time correlators involving
three operators are given by

)⌧Í ÇO1
(t) íA(t+ ⌧) ÇO

2
(t)Î =MÍ

ÇO
1
(t) íA(t+ ⌧) ÇO

2
(t)Î . (A.13)
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In both cases the two-time correlators can obtained formally by integrating the differential
equation, which then leaves us with

Í

ÇO(t) íA(t+ ⌧)Î = eM⌧
Í

ÇO(t) íA(t)Î , (A.14a)

Í

ÇO
1
(t) íA(t+ ⌧) ÇO

2
(t)Î = eM⌧

Í

ÇO
1
(t) íA(t) ÇO

2
(t)Î , (A.14b)

which also involves computing the exponential of a matrix, which is general is smaller than the
Liouvillian.

a.1.3 Delayed correlations

Using the methods described in the previous section, we are ready to compute the temporal
correlations of the field, as given by Eq. (A.6). From them, we can extract the information
regarding the energy profile and the temporal structure with which the photons are emitted
from the system.

The emission spectrum of the system described with annihilation operator c, which could
be either bosonic or fermionic, is obtained from the real part of the Fourier transform of the
first-order correlation function:

S(!) = 1

⇡
1

nc
R

 

ÿ

0

Íc†c(⌧)Îei!⌧d⌧ . (A.15)

where nc = Íc†cÎ is the mean population of the system in the steady-state. We can use the
formal solution to the ⌧-correlators in Eq. (A.7) or Eq. (A.14) to simplify the expression for the
spectrum. For instance, the correlator Íc†c(⌧)Î is given by

Íc†c(⌧)Î = Tr
⌅

ceL⌧ (⇢ssc†)
⇧

, (A.16)

where ⇢ss is the density matrix in the steady-state. Replacing this expression on the spectrum
we obtain

S(!) = 1

⇡
1

nc
Tr

4

c
 

ÿ

0

eL⌧ei!⌧ (⇢ssc†)d⌧
5

, (A.17)

which can be integrated formally to yield

S(!) = * 1

⇡
1

nc
Tr

⌧

c 1

L+ i!1
(⇢ssc†)

�

, (A.18)

where 1 is the identity matrix and we have assumed that the integral becomes zero in the limit
of infinite delay. Note that now the problem has been reduced to obtain the inverse of the
matrix (L+ i!1) instead of computing the exponential of the Liouvillian.

Similarly, we can use the expression of either Eq. (A.7) or Eq. (A.14) to generalize the
second-order correlation function defined in Eq. (1.32) to include finite delays as

g(2)(⌧) =
Íc†(c†c)(⌧)cÎ

Íc†cÎ2
=

Tr
�

c†ceL⌧ [c⇢ssc†]
�

Tr
�

c†c⇢ss
�2

, (A.19)

where c is the annihilation operator of the mode under investigation.

a.2 numerical methods for the regression matrix

This first appendix is devoted to the numerical methods I have used to obtain the results shown
in this Thesis.

The solutions to the Master equations of the type given in Eq. (1.20), are commonly obtained
numerically, finding directly the density matrix ⇢ that satisfies the equation. However, while the
numerical solutions are readily obtained, finding analytic expressions is a rather complicated
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task. Conversely, one can obtain the solution to the equation, by computing the differential
equation that rule the behaviour of the mean values of the operators of interest, e.g., Í ÇOÎ(t) =
Tr(⇢(t) ÇO).

Such a differential equation is obtained directly from the Master equation, taking into account
the linearity of the derivatives and the trace:

)tÍ ÇOÎ = )tTr(⇢ ÇO) = Tr()t⇢ ÇO) . (A.20)

Note that the rightmost term of Eq. (A.20) includes explicitly the term )t⇢, which is exactly the
left-hand side of the Master equation in Eq. (1.20). Thus, replacing the right-hand side of the
master equation onto Eq. (A.20), we have

)tÍ ÇOÎ = Tr()t⇢ ÇO) , (A.21a)

=
i
=
Tr

�

[⇢,H] ÇO
�

+

…

k

�k
2
Tr

$⇠

2Lk⇢L
†

k +L
†

kLk⇢+ ⇢L
†

kLk
⇡

ÇO
%

, (A.21b)

=
i
=
Tr

�

⇢H ÇO * ⇢ ÇOH
�

+

…

k

�k
2
Tr

⇠

2⇢L†

k
ÇOLk * ⇢ ÇOL

†

kLk * ⇢L
†

kLk ÇO
⇡

, (A.21c)

=
i
=
⇣

[H , ÇO]
⌘

+

…

k

�k
2

⇠

2

(

L†

k
ÇOLk

)

*

(

ÇOL†

kLk
)

*

(

L†

kLk ÇO
)⇡

, (A.21d)

where we have used the cyclic property of the trace and in Eq. (A.21c) we have placed the
density matrix on the leftmost part of each term. Thus, the most general term that one can
write to study a system made of N quantum objects—each of which modelled with annihilation
operator cj—is given by replacing

ÇO = c†�1
1

c⌫1
1
c†�2
2

c⌫2
2
5 c†�NN c⌫NN , (A.22)

where �k and ⌫k are integers for all k, and which may take values as large as the truncation
of the Hilbert space of their respective quantum object. Therefore, Eq. (A.22) provides a set of
coupled equations, that can be condensed as

)t ív = Mív , (A.23)

where ív = {1 , Íc†
1
Î , Íc†

1
c
1
Î ,5 Íc†�1

1
c⌫1
1
c†�2
2

c⌫2
2
5 , c†�NN c⌫NN Î}

T is a vector containing all the mean
values, and M is a matrix containing all the coefficients of the coupled equations. As the
matrix M can also be used to compute the delayed-correlations—using the Quantum Regression
Theorem showed in section A.1.2—it is commonly referred to as the Regression Matrix. In the
following subsections we will show the sets of equations that result from the Master equation
of some of the fundamental systems discussed on this Thesis.

a.2.1 Incoherently driven harmonic oscillator

The master equation of a harmonic oscillator with annihilation operator a and driven incoher-
ently is given by (we set = = 1)

)t⇢ = i[⇢,!aa†a] +
�a
2
La⇢+

Pa
2
La†⇢ , (A.24)

where !a is the frequency of the harmonic oscillator, which leaks and receives photons at
rates �a and Pa, respectively, and Lc⇢ = (2c†⇢c * c†c⇢* ⇢c†c).

In this case, the general equation is yields the following term

)t
⇣

a†�a⌫
⌘

=

<

i!a(� * ⌫)*
�a * Pa

2
(� + ⌫)

=

⇣

a†�a⌫
⌘

+ Pa�⌫
⇣

a†�*1a⌫*1
⌘

, (A.25)

from which it is already clear that i) the incoherently driving cannot build coherence on the
harmonic oscillator (as the off-diagonal elements only decay from their initial condition), and ii)
the harmonic oscillator is left in a thermal state, for which the Nth-order correlation function,
defined in Eq. (1.32), is given by g(N)

a = N!.
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a.2.2 Coherently driven harmonic oscillator

The master equation of a harmonic oscillator with annihilation operator a and driven incoher-
ently is given by (we set = = 1)

)t⇢ = i[⇢, (!a *!L
)a†a+⌦a(a† + a)] +

�a
2
La⇢ , (A.26)

where !a is the frequency of the harmonic oscillator, which leaks photons at a rate �a, and !
L

and ⌦a are the frequency and intensity of the coherent field driving the harmonic oscillator.
In this case, the general equation is yields the following term

)t
⇣

a†�a⌫
⌘

=

$

i(!a *!L
)(� * ⌫)*

�a
2
(� + ⌫)

%

⇣

a†�a⌫
⌘

+ i⌦a
�

�
⇣

a†�*1a⌫
⌘

* ⌫
⇣

a†�a⌫*1
⌘�

.
(A.27)

This time, the analysis is not trivial, but with a bit of care one can notice that the harmonic
oscillator is left in a coherent state, for which the Nth-order correlation function is given
by g(N)

a = 1.

a.2.3 Incoherently driven two-level system

The master equation of a two-level system with annihilation operator � and driven incoherently
is given by (we set = = 1)

)t⇢ = i[⇢,!��†�] +
��
2
L�⇢+

P�
2
L�†⇢ , (A.28)

where !� is the frequency of the two-level system, which leaks and receives photons at rates ��
and P� , respectively, and Lc⇢ = (2c†⇢c * c†c⇢* ⇢c†c).

In this case, the general equation is yields the following term

)t
⇣

�†��⌫
⌘

=

<

i!�(� * ⌫)*
�� + P�

2
(� + ⌫)

=

⇣

�†��⌫
⌘

+ P��⌫
⇣

�† 1*��1*⌫
⌘

. (A.29)

As in the case of the excitation of a harmonic oscillator, the incoherent driving is unable to
build coherence on the density matrix of the two-level system. Also, note that the steady-state
solution for the population bounded by 1, to which it goes asymptotically as the rate of driving
becomes larger than the decay rate. Besides, note that all the N-photon correlation function
vanish, but the reason is the fermionic character of the two-level system: the operator � is
nilpotent, meaning that, regardless of the driving scheme, it always satisfies �2 = 0.

a.2.4 Coherently driven two-level system

The master equation of a two-level system with annihilation operator � and driven coherently
is given by (we set = = 1)

)t⇢ = i[⇢, (!� *!L
)�†� +⌦�(�† + �)] +

��
2
L�⇢ , (A.30)

where !� is the frequency of the harmonic oscillator, which leaks photons at a rate �� , and !
L

and ⌦� are the frequency and intensity of the coherent field driving the harmonic oscillator.
In this case, the general equation is yields the following term

)t
⇣

�†��⌫
⌘

=

$

i(!� *!L
)(� * ⌫)*

��
2
(� + ⌫)

%

⇣

�†��⌫
⌘

+

+ i⌦�
�

[� + 2⌫(1* �)]
⇣

�† 1*��⌫
⌘

* [⌫ + 2�(1* ⌫)]
⇣

�†��1*⌫
⌘�

. (A.31)
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a.2.5 Cascaded excitation

Using the emission from a quantum source to drive another system is done through the
Cascaded coupling, which modifies the Master equation of the system to

)t⇢ = i[⇢,H] +
��
2
L�⇢+

�a
2
La⇢+

˘

↵���a
2

�

[�⇢, a†] + [a, ⇢�†]
�

. (A.32)

Here, H is the Hamiltonian describing the free evolution of the two quantum systems under
consideration, of which we have given particular cases in the previous subsections. Furthermore,
the source of the quantum light is described with the annihilation operator �, and set to
decay spontaneously at a rate �� . The target of the quantum excitation, on the other hand, is
described through the annihilation operator a and set to decay with rate �a. The rightmost term
of Eq. (A.32) describes the unidirectional coupling between the source and the target. López
Carreño, del Valle, and Laussy (2018) showed that the factor ↵ = (1 * �

1
)(1 * �

2
) takes into

account the amount of the light that i) the source (�) and the target (a) are allows to emit to free
space (with fractions �

1
and �

2
, respectively) and ii) the fraction of the light that is emitted by

the system as a whole, i.e., the exact source cannot be distinguished. Such an amount of light
corresponds to a fraction (1* �

1
)(1* �

2
) of the total light.

Following the procedure done in Eq. (A.21), we find that the contribution from the cascaded
coupling to the general differential equation for the correlators is give by

)tÍ ÇOÎ =
˘

↵���a
�⇣

a†� ÇO
⌘

*
⇣

�†a ÇO
⌘

+
⇣ ÇOa†�

⌘

+
⇣ ÇO�†a

⌘�

. (A.33)

Note that the complete differential equation needs to include the terms coming from the
Hamiltonian and the independent decay of the source and the target of the excitation.

Depending on the type of object that we are using as the source and the target, whether
they follow the Fermi or the Bose-Einstein statistics, the equation ruling the dynamics of the
correlators is different:

1. Bosonic source & bosonic target:

)t
⇣

�†��⌫a†man
⌘

= *
˘

↵���a
�

m
⇣

�†�+1�⌫a†m*1an
⌘

+ n
⇣

�†��⌫+1a†man*1
⌘�

. (A.34)

2. Bosonic source & fermionic target:

)t
⇣

�†��⌫a†man
⌘

= *
˘

↵���a
�

m
⇣

�†�+1�⌫a† 1*man
⌘

+ n
⇣

�†��⌫+1a†ma1*n
⌘

*

*2m(1* n)
⇣

�†�+1�⌫a†ma1*n
⌘

* 2n(1*m)
⇣

�†��⌫+1a† 1*man
⌘�

. (A.35)

3. Fermionic source & bosonic target:

)t
⇣

�†��⌫a†man
⌘

= *
˘

↵���a
�

m(1* �)
⇣

�† 1*��⌫a†m*1an
⌘

+

+ n(1* ⌫)
⇣

�†��1*⌫a†man*1
⌘�

. (A.36)

4. Fermionic source & fermionic target:

)t
⇣

�†��⌫a†man
⌘

= *
˘

↵���a
�

m(1* �)
⇣

�† 1*��⌫a† 1*man
⌘

+ n(1* ⌫)
⇣

�†��1*⌫a†ma1*n
⌘

*

* 2m(1* n)(1* �)
⇣

�† 1*��⌫a†ma1*n
⌘

* 2n(1*m)(1* ⌫)
⇣

�†��1*⌫a† 1*man
⌘�

. (A.37)
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b.1 proof that fock duos bound the (na, g
(2)

a ) space

We prove mathematically that there are no states below the boundary set by Eq. (5.4) but at least
one for every point above, thus showing that our charting of the Hilbert space in the (na, g

(2)

a )

space as defined by this boundary is complete.

proposition: For a given population na À R, the maximum antibunching is given by a superposition
of at most two consecutive Fock states. ∏

First, for any na À R, there exists a superposition of at most two consecutive Fock states that
provides this population, namely:

˘

‚na„* na + 1 Û
Û

‚na„Î+
˘

na * ‚na„ Û
Û

‚na„+ 1Î . (B.1)

We can write without loss of generality the generic state (5.1) as:
ÿ
…

k=*‚na„

˘

p(‚na„+ k) Û
Û

‚na„+ kÎ , (B.2)

where we remind that p(n) = ↵n2 and is such that
≥ÿ

n=0 p(n) = 1. Restricting ourselves to states
with the same population implies:

ÿ
…

k=*‚na„
p(‚na„+ k)(‚na„+ k) = na . (B.3)

The second order correlation function for such states is then found as:

g(2)a =

ÿ
…

k=*‚na„
(‚na„+ k)(‚na„+ k* 1)p(‚na„+ k)_n2a . (B.4)

Since na is the same for both states (B.1) and (B.2) when Eq. (B.3) is satisfied, it is enough
for the comparison of their antibunching to consider the difference of their n2ag

(2)

a (effectively
getting rid of the denominator, which simplifies the notations). We call this difference �G(2)

a
and find, from Eq. (5.4) and (B.4):

�G(2)

a =

ÿ
…

k=*‚na„
(‚na„+ k)(‚na„+ k* 1)p(‚na„+ k)*

* ‚na„(‚na„* 1)(‚na„* na + 1)* ‚na„(‚na„+ 1)(na * ‚na„) ,

=

L

…

kë{0,1}
(‚na„+ k)(‚na„+ k* 1)p(‚na„+ k)

M

+

+ ‚na„(‚na„* 1)(p(‚na„)* ‚na„+ na) + ‚na„(‚na„+ 1)(p(‚na„+ 1)* (na * ‚na„)) ,

where we have separated the terms k = 0, 1 from the sum and re-arranged the factors. Now,
since p(‚na„ + 1) = 1 * p(‚na„) *

≥

kë{0,1} p(‚na„+ k) from the probability normalization, we
arrive to:

�G(2)

a =

L

…

kë{0,1}
(k* 1)(2‚na„+ k)p(‚na„+ k)

M

* 2‚na„(p(‚na„)* ‚na„+ na * 1) . (B.5)
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On the other hand, from Eq. (B.3), we can isolate:

p(‚na„) = ‚na„* na + 1 +

…

kë{0,1}
(k* 1)p(‚na„+ k) , (B.6)

which, injected back in Eq. (B.5), yields:

�G(2)

a =

…

kë{0,1}
k(k* 1)p(‚na„+ k) .

This is the final result, since all the terms in the sum are non-negative, we can conclude
that �G(2)

a g 0. The inequality is maximized when all the probabilities p(‚na„+ k) = 0 for
k ë {0, 1}, i.e., for the states of type (B.1). When na is an integer, i.e., ‚na„ = na, the maximum
antibunching is obtained with the Fock state Û

Û

naÎ. QED.

proposition: For a given population na À R and any positive real number �, there is at least one
state such that �G(2)

= �. ∏

Let us consider the set of states with population na =
≥

n np(n). We can construct a state ⇢
0

with population na in the following way:

⇢
0
= p(0) 0Î Í0+ p(‚na„) Û

Û

‚na„Î Í‚na„Û
Û

+ (1* p(0)* p(‚na„)) kÎ Ík .

Imposing the population constraint, we obtain the following condition:

p(0) =
0

k* na
k

1

* p(‚na„)
0

k* ‚na„
k

1

,

where we have assumed that ‚na„ < k À N. The g(2)a = g(2)a< + � of this state is given by:

g(2)a n2a = ‚na„(‚na„* 1)p(‚na„) + k(k* 1)(1* p(0)* p(‚na„)) ,

from which we can obtain p(‚na„):

p(‚na„) =
na

⇠

k* 1* nag
(2)

a

⇡

‚na„(k* ‚na„)
.

If � > 0 we can find an integer number k > max(nag
(2)

a , ‚na„) such that 0 f p(‚na„) f 1.
Considering that this state is not made of two consecutive Fock states, the accessible g(2)a s are
larger than g(2)a< . Of course, when p(0) = 0 and k = ‚na„+ 1, ⇢

0
is the maximally antibunched

state and g(2)a = g(2)a< . When na < 1, ‚na„ = 0, and the procedure above fails. In such case, we can
build another state,

⇢
1
= p(0) 0Î Í0+ p(1) 1Î Í1+ (1* p(0)* p(1)) kÎ Ík ,

such that na = p(1) + k(1* p(0)* p(1)). From this constraint we obtain the following condition:

p(1) =
k(1* p(0))* na

k* 1
.

The g(2)a of this state is given by:

g(2)a n2a = k(k* 1)(1* p(0)* p(1)) ,
= k(na + p(0)* 1) ,

from which we conclude that:

p(0) =
g(2)a n2a + k(1* na)

k
.

Again, we can always find an integer k > 1, such that 0 f p(0) f 1.
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b.2 master equation for the cascade of two systems

The theory of cascaded systems developed by Gardiner and Zoller (2000) allows to couple
unidirectionally two quantum systems, so that one of them can be regarded as the source of
the excitation that the other one receives, thus behaving as an optical target. The formalism is
based on writing the Langevin equation for the operators of the two systems:

Üa
1
= i[a

1
,H

sys
]* [a

1
, c†

1
]

$�
1

2
c
1
+
˘

�
1
b(1)
in

%

+

$�
1

2
c†
1
+ �

1
b† (1)
in

%

[a
1
, c

1
] , (B.7a)

Üa
2
= i[a

2
,H

sys
]* [a

2
, c†

2
]

$�
2

2
c
2
+
˘

�
2
b(2)
in

%

+

$�
2

2
c†
2
+ �

2
b† (2)
in

%

[a
2
, c

2
] , (B.7b)

where ak is any operator of system k that decays at a rate �k, H
sys

= H
1
+H

2
is the total

Hamiltonian, describing the independent dynamics of the two systems, and b(k)
in

is the input field
of system k. Since we are considering that the system 2 (the target) is the driven by the emission
of system 1 (the source), is clear that the input field of system 2 corresponds to the output field
of system 1:

b(2)
in

= b(1)
in

+
˘

�
1
c
1
, (B.8)

where the last term of the rhs describe the emission of system 1, due only to its internal
dynamics. Converting Eq. (B.7) to a Quantum Ito equation and assuming that the input field has
an amplitude E , we can obtain a master equation for the operator ⇢(t) describing the cascaded
system, which takes the form:

)t⇢ = i[⇢,H
1
+H

2
]*

⌧

E(
˘

�
1
c†
1
+
˘

�
2
c†
2
)* E

<
(
˘

�
1
c
1
+
˘

�
2
c
2
), ⇢

�

+

+
�
1

2
Lc1⇢+

�
2

2
Lc2⇢+

˘

�
1
�
2

$

[c
1
⇢, c†

2
] + [c

2
, ⇢c†

1
]

%

, (B.9)

which is the equation to which we refer to in Section 6.2. We note that the last term of the
firs line in Eq. (B.11) is a Hamilonian–like term, that describes the coherent driving of the two
systems in the cascade.

b.3 master equation for the cascade of an arbitrary number of systems

The formalism presented in Appendix B.2 can be generalized to the cascade of an arbitrary
number of systems. In such case, each operator of the kth system would satisfy the Langevin
equation,

Üak = i[ak,Hsys
]* [ak, c

†

k]
$�k

2
ck
˘

�kb
(k)
in

%

+

$�k
2
c†k + �kb

† (k)
in

%

[ak, ck] , (B.10)

where now the input field of the kth system corresponds to the output field of the (k * 1)th
system, i.e., b(k)

in
= b(1)

in
+
≥k*1
j=1

˘�jcj . As in the Appendix B.2, we can derive the master equation
for operator ⇢(t) describing the cascaded system,

)t⇢ =
N
…

j=1

⇠

i[⇢,Hj] +
�k
2
Lck⇢*

˘

�j
⌧

Ec†j * E
<cj , ⇢

�⇡

+

N
…

j=2

j*1
…

l=1

˘

�j�l
$

[cl⇢, c
†

j ] + [cj , ⇢c
†

l ]
%

, (B.11)

which is the equation that we refer to in Section 6.5.
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The microcavity used for the experiments is made of two sets of distributed Bragg mirrors—each
of them made of 20 layers—confining light, and one In

0.05Ga
0.95As quantum well confining

excitons. The quantum well is placed at the antinode of the cavity to maximize the interaction
between the light and the exciton, and thus allowing the access into the strong coupling regime,
as seen three decades ago by Weisbuch et al. (1992). The experiment can be understood as
four parts: the generation of the entangled photons, the measurement of the signal-photon
tomography, the (classical) excitation of the polaritons, and the measurement of the polariton-
photon tomography. The first part is accomplished with a Sagnac interferometer, excited with a
single-mode diode laser at 405 nm, which is pumped with a power of 6.5mW and bandwidth
FWHM < 5 pm. The power selection is achieved by fixing a half-wave plate (HWP) before a
polarizing beam splitter (PBS), and the horizontal output polarization is again rotated in a
desired arbitrary polarization before a dichronic mirror (DM). In order to increase the efficiency
of the PPKTP crystal, we introduced a lens to focalize the diode right on top of the crystal.
The second and the fourth sections of the setup are used for the tomography measurement.
The idler photon goes through the polariton source, which consists on a cryostat at 20K and a
pressure of 100mbar. The single-photon is focused on the surface of the microcavity and the
emitted photons are recollected with a second lens sending them directly to the fourth stage
(the idler’s tomography stage). In the experiment measuring nonlinear effects, an additional
laser is sent to the microcavity at a particular angle. The transmitted photons given by the laser
are covered with a diaphragm (pinhole, PH) at the Fourier plane of the recollection lens.

The entanglement measurement is made following the work of Altepeter, Jeffrey, and Kwiat
(2005), performing a tomographic analysis. In our case, we apply a hypercomplete tomography
by projecting the bipartite state onto a combination set of three bases: logical (HÎ & VÎ),
diagonal (+Î = (HÎ + VÎ)_

˘

2 & *Î = (HÎ * VÎ)_

˘

2), and circular (RÎ = (HÎ + iVÎ)_
˘

2

& LÎ = (HÎ* iVÎ)_
˘

2). Each local projection is done by applying a rotation in a QWP and
a HWP, followed by a PBS as polarization filter (see Fig 7.5). Finally, the remaining photons
belonging to the qubit of both the signal and the idler are coupled to a single-mode optical
fiber, connected to an avalanche photo-detector (APD). The reconstruction of the state sees
the relative coincident count events among all the mentioned projections during the desired
integration time. In that way, we measure the state by projecting many copies of the same.
The measurements corresponding to the results reported in Fig. 8.1 were unavoidably affected
by the presence of the classical continuous-wave laser which was minimised by momentum
selection of the polariton signal (as shown in Fig. 7.5d). The contribution of this noise, however,
was subtracted from the raw data by performing desynchronised tomography for each power
of the external laser. The calibration of the population and density in presence of the classical
laser was obtained by means of four different parameters: the pumping power, the photon
energy, the polariton lifetime and the laser spot size. The amount of photons/sec delivered by
the laser to the microcavity were calculated as the ratio Power/Energy. Given the transmission
of the microcavity and assuming the same amount of photons to be emitted on both sides of
the sample, only 0.5% of the photons become polaritons. Multiplying this rate of polaritons/sec
by the lifetime of a polariton (measured as 3 ps), gives a maximum of 380 polaritons for the
highest power used. The polariton density was obtained by dividing by the spot area of the
driving laser (A = 706µm2).
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and J. Vučković (2016). “Self-homodyne-enabled generation of indistinguishable photons”.
In: Optica 3, p. 931. doi: 10.1364/OPTICA.3.000931.

Muñoz-Matutano, G., A. Wood, M. Johnsson, X. Vidal, B Q. Baragiola, et al. (2019). “Emergence
of quantum correlations from interacting fibre-cavity polaritons”. In: Nat. Mater. 18, p. 213.
doi: 10.1038/s41563-019-0281-z.

Nguyen, H. S., G. Sallen, C. Voisin, Ph. Roussignol, C. Diederichs, and G. Cassabois (2011).
“Ultra-coherent single photon source”. In: Appl. Phys. Lett. 99, p. 261904. doi: 10.1063/1.
3672034.

Nienhuis, G. (1993). “Spectral correlations in resonance fluorescence”. In: Phys. Rev. A 47, p. 510.
doi: 10.1103/PhysRevA.47.510.

Nieto, M. M. (1997). “Displaced and squeezed number states”. In: Phys. Lett. A 229, p. 135. doi:
10.1016/S0375-9601(97)00183-7.

Nomura, M., N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa (2010). “Laser oscillation in
a strongly coupled single-quantum-dot–nanocavity system”. In: Nat. Phys. 6, p. 279. doi:
10.1038/nphys1518.
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