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Life should not be a journey to the grave with the intention of
arriving safely in a pretty and well preserved body, but rather
to skid in broadside in a cloud of smoke, thoroughly used up,
totally worn out, and loudly proclaiming “Wow! What a Ride!”

— Hunter S. Thompson

The Universe is made of stories, not of atoms.

— Muriel Rukeyser

Success is a journey, not a destination.
It requires constant effort, vigilance and reevaluation.

— Mark Twain

El ejecutor de una empresa atroz debe imaginar que ya la ha cumplido,
debe imponerse un porvenir que sea irrevocable como el pasado.

— Jorge Luis Borges






PREFACIO

¢Cuando comenzé todo esto? ;En qué momento decidi que era esto lo que queria? Seguramente
la decisién la hice con el subconsciente, comenzando a querer hacer un Doctorado sin saber
muy bien todo lo que eso implica. Desde muy joven me atrajeron las matematicas. Pero las
matemadticas con sentido, aplicadas a cosas de la vida real. Nunca me gustaron las demostra-
ciones que mis colegas del departamento de al lado me pedian hacer durante la carrera. Mds de
una noche la pase en vela tratando de demostrar teoremas de dlgebra que nunca mas me volvi
a encontrar. Pero la Fisica! La Fisica, el Universo, la Luz. .. estas cosas son hermosas, y parecia
que nunca tenia suficiente de ellas, podia pasarme dias y dias, y el tiempo se me iba como
arena que se me escurria de entre las manos, y yo con una sonrisa porque estaba haciendo
lo que me gustaba. Asi, al final de los cinco afios de carrera en Bogotd, lo tenia clarisimo: mi
camino tenia que transcurrir por un Doctorado. No tanto por el hecho de ser Doctor. Siendo de
un pais donde “Doctor” es cualquier idiota con un poquito de poder, no hay nada que repudie
maés que ese titulo. Pero veia en hacer un doctorado el paso obligado en la vida académica. Asf,
comencé a sofiar con Europa, y aunque siempre habia pensado que iria a Alemania, terminé en
Madrid. Y es que la vida es eso lo que pasa mientras estds ocupado haciendo planes, ;no?

Estando “afuera” entendi lo que mis profes muchas veces nos dijeron: para hacer un doctor-
ado, realmente hay que querer hacerlo. Hacer el trabajo y estudiar es facil. Al fin y al cabo es lo
que nos gusta hacer. Es el ambiente en el que hay que hacer ese trabajo lo que no es sencillo.
Por mas reconfortante que fuera el trabajo, hacer el doctorado fue también escoger una vida
solitaria en la que no es sencillo encontrar un lugar al que llamar hogar. En muchas ocaciones
he tenido la sensacién de ser el otro, el diferente (que es simplemente una consecuencia de ser
inmigrante) y con el paso del tiempo de dejar de ser de ninguna parte. Ahora soy colombiano
porque eso es lo que dice mi pasaporte, pero ya ni alld siento que encajo. Soy de todas partes,
pero a la vez de ninguna. Este era el precio que habia que pagar para obtener la recompensa
académica. A esto es a lo que se referian esos profes. Luego, el asunto es saber si se tiene la
piel lo suficientemente gruesa como para soportarlo y mantener la esperanza de que un dia esa
sensacion se vaya o que deje de importarte. Todo esto mientras tienes la presién de escribir un
paper. Asi, escribir la Tesis es un reto. Al menos asi lo fue para mi. Fue el momento en el que
tuve que enfrentarme, tal vez por primera vez y completamente solo, a todas las inseguridades
y preguntas transcendentales que habia estado poniendo debajo de la alfombra durante muchos
afios. Fue el momento en el que todo el esfuerzo que habia hecho para llegar hasta aqui parecia
insignificante a comparacion de lo que quedaba por hacer. Tanto asi que mds de una vez me
pasé por la cabeza dejarlo todo y huir. Pero, ja dénde? Seguramente el miedo de no saber la
respuesta a esta tltima pregunta es mds grande que el de enfrentarme a mi mismo, porque aqui
sigo, a las tres de la mafana de un Jueves en Wolverhampton, como bien lo dijera Hemingway,
sangrando estas lineas.

Por supuesto, no todo son tristezas. Tal vez lo que pasa es que son las que més se recuerdan
cuando uno se pone a mirar hacia atrds con nostalgia. Pienso que hacer la Tesis forja el caracter
y quiero pensar que ahora soy una persona mads fuerte emocional e intelectualmente. Ademads,
durante estos afios he ido a lugares y he conocido a personas increibles (al final, jtodo se trata
de las personas!) por las que no puedo mds que agradecer a la Vida por haberlas puesto en mi
camino. Ahora lo que queda es ver quién gana este pulso: si la Tesis o yo. A lo mejor ambos. A
lo mejor ninguno. A lo mejor sucede como decia Garcia Marquez: uno nunca acaba un texto,
uno lo abandona.

Wolverhampton, Octubre de 2019
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ABSTRACT

ENGLISH

A two-level system—the idealization of an atom with only two energy levels—is the most
fundamental quantum object. As such, it has long been at the forefront of the research in
Quantum Optics: its emission spectrum is simply a Lorentzian distribution, and the light it
produces is the most quantum that can be. The temporal distribution of the photon emission
displays a perfect antibunching, meaning that such a system will never emit two (or more)
photons simultaneously, which is consistent with the intuition that the two-level system can
only sustain a single excitation at any given time. Although these two properties have been
known for decades, it was not until the advent of the Theory of Frequency-filtered and Time-resolved
Correlations that it was observed that the perfect antibunching is not the end of the story: the
correlations between photons possess an underlying structure, which is unveiled when one
retains the information about the color of the photons. This is a consequence of the Heisenberg
uncertainty principle: measuring perfect antibunching implies an absolute knowledge about
the time at which the photons have been emitted, which in turn implies an absolute uncertainty
on their energy. Thus, keeping some information about the frequency of the emitted photons
affects the correlations between them. This means that a two-level system can be turned into
a versatile source of quantum light, providing light with a large breadth of correlation types
well beyond simply antibunching. Furthermore, when the two-level system is driven coherently
in the so-called Mollow regime (in which the two-level system becomes dressed by the laser
and the emission line is split into three), the correlations blossom: one can find every type
of statistics—from antibunching to superbunching—provided that one measures the photons
emitted at the adequate frequency window of the triplet. In fact, the process of filtering the
emission at the frequencies corresponding to N-photon transitions is the idea behind the
Bundler, a source of light whose emission is always in bundles of exactly N photons.

The versatility of the correlations decking the emitted light motivates the topic of this
Dissertation, in which I focus on the theoretical study of the behaviour that arises when
physical systems are driven with quantum light, i.e., with light that cannot be described through
the classical theory of electromagnetism. As the canon of excitation used in the literature is
restricted to classical sources, namely lasers and thermal reservoirs, our description starts
with the most fundamental objects that can be considered as the optical targets: a harmonic
oscillator (which represents the field for non-interacting bosonic particles) and a two-level
system (which in turn represents the field for fermionic particles). I describe which regions
of the Harmonic oscillator’s Hilbert space can be accessed by driving the harmonic oscillator
with the light emitted by a two-level system, i.e., which quantum steady states can be realized.
Analogously, we find that the quality of the single-photon emission from a two-level system
can be enhanced when it is driven by quantum light. Once the advantages of using quantum,
rather than classical, sources of light are demonstrated with the fundamental optical targets, we
turn to the quantum excitation of more involved systems, such as the strong coupling between
a harmonic oscillator and either a two-level system—whose description is made through the
Jaynes-Cummings model—or a nonlinear harmonic oscillator—which can be realized in systems
of, e.g., exciton-polaritons. Here I find that the statistical versatility of the light emitted by
the Mollow triplet allows to perform Quantum Spectroscopy on these systems, thus gaining
knowledge of its internal structure and dynamics, and in particular to probe their interactions
with the least possible amount of particles: two. In the process of exciting with quantum light,
I am called to further examine the source itself. In fact, there is even the need to revisit the
concept of a single-photon source, for which I propose a more robust criterion than g. I also
turn to toy-models of the Bundler so as to use it effectively as an optical source. We can then
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study the advantages that one gets and shortcomings that one faces when using this source of
light to drive all the systems considered on excitation with the emission of a two-level system.

ESPANOL

El sistema de dos niveles—Ia idealizacién de un dtomo constituido por solo dos niveles—es el
sistema cudntico mds fundamental que existe. Asi, ha estado desde siempre en la vanguardia
de la investigacion sobre la Optica Cuéntica: su espectro de emisién estd dado simplemente
por una distribucién Lorentziana, y la luz que produce es tan cuantica como es posible. Los
fotones emitidos por este sistema estan perfectamente anti-agrupados (antibunched), lo que
quiere decir que este sistema nunca emitird mas de un fotén simultdneamente, que a la vez es
consistente con el hecho de que el sistema solo puede mantener una excitacién en cada instante
de tiempo. Aunque estas dos propiedades son conocidas desde hace décadas, no ha sido sino
hasta la llegada de la Teoria de Correlaciones filtradas en frecuencia y resueltas en tiempo que se
observé que el anti-agrupamiento perfecto no es el final de la historia: las correlaciones entre
los fotones estan investidas por una estructura subyacente, que es desvelada cuando se retiene
la informacién sobre el color de los fotones emitidos. Esto es una consecuencia del principio
de incertidumbre de Heisenberg: medir anti-agrupamiento perfecto implica el conocimiento
absoluto del tiempo en el que los fotones fueron emitidos, lo que a su vez supone la completa
incertidumbre sobre su energia. De esta manera, al obtener un poco de informacién sobre la
frecuencia en la que los fotones han sido emitidos, uno afecta las correlaciones entre ellos. Esto
significa que un sistema de dos niveles puede convertirse en una versatil fuente de luz cudntica,
capaz de proveer luz con un gran rango de correlaciones, yendo mucho mads all4 del simple
anti-agrupamiento. Es mds, cuando el sistema de dos niveles es excitado coherentemente en el
denominado régimen de Mollow (en el que el sistema de dos niveles es vestido por el laser, y su
linea de emisién se divide en tres), las correlaciones florecen: uno puede encontrar todos los
tipos de estadisticas—desde anti-agrupamiento hasta super-agrupamiento—dado que uno mida
los fotones emitidos a las frecuencias adecuadas del triplete. De hecho, el proceso mediante el
cual se filtra la emisién a las frecuencias que corresponden a transiciones de N fotones es la idea
detrés del Bundler, una fuente de luz cuya emision siempre ocurre en manojos de N fotones.
La versatilidad de las correlaciones que acompafian a la luz emitida es la motivacion para el
tema de esta Disertacion, en la que me enfoco en el estudio tedrico del comportamiento que
surge cuando sistemas fisicos son excitados mediante luz cudntica, i.e., con luz que no puede
ser descrita mediante la teoria clasica del electromagnetismo. Como el canon de excitacién
usado en la literatura estd restringida a fuentes clasicas, es decir ldseres o reservorios térmicos,
nuestra descripcién comienza con los objetos mas fundamentales que se pueden considerar
como objetivos 6pticos: un oscilador arménico (que representa el campo de particulas bosénicas
no interactuantes) y un sistema de dos niveles (que en cambio representa el campo de particulas
fermionicas). Describo cuales son las regiones del espacio de Hilbert del oscilador arménico
que pueden ser accedidas cuando este es excitado por la luz emitida por un sistema de dos
niveles, i.e., qué estados cudnticos se pueden obtener como estados estables. De manera andloga,
encuentro que la calidad de los fotones individuales emitidos por un sistema de dos niveles se
puede mejorar cuando este es excitado mediante luz cuantica. Una vez demostradas las ventajas
de usar luz cudntica, en vez de luz clasica, mediante los objetivos 6pticos mds fundamentales,
considero la excitacion cuédntica de sistemas mas elaborados, como el acoplo fuerte entre un
oscilador arménico y, o un sistema de dos niveles—cuya descripcién se hace mediante el modelo
de Jaynes-Cummings—o un oscilador arménico no lineal—que, por ejemplo, se puede encontrar
en sistemas de polaritones exciténicos. Asi, he visto que la versatilidad de la estadistica de
la emisién del triplete de Mollow hace posible la implementacién de Espectroscopia cudntica
sobre estos sistemas, pudiendo de esta manera obtener informacién de su estructura interna
y dindmica, y en particular sondear sus interacciones con el menor nimero de particulas
posible: dos. En el proceso de excitar mediante luz cudntica, he tenido que examinar la fuente
en si. De hecho, incluso hay necesidad de revisar el concepto de fuente de fotones individuales,

XX



para el que he propuesto un criterio méas robusto que la g. También he considerado modelos
sencillos para describir el Bundler para poder usarlo de manera eficaz como fuente 6ptica. Asi,
podemos estudiar las ventajas y desventajas con las que uno se enfrenta al usar esta fuente de
luz para excitar todos los objetivos con un sistema de dos niveles.
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PRELIMINARIES

Out of darkness cometh light

1.1  LIGHT
1.1.1  Cosmic & ‘Civilizational” background

According to the Bible, Light was created right after Heaven and Earth:

UIn the beginning God created the heaven and the Earth.

2And the Earth was without form, and void; and darkness was upon the face of the deep.
And the Spirit of God moved upon the face of the Waters.

3And God said, Let there be light: and there was light.

*And God saw the light, and it was good; and God divided the light from the darkness.

From a scientific point of view, the Universe began with the so-called Big Bang. What happened
before is unknown, and Stephen Hawking even said that such a question is futile, as the concept
of time only has physical meaning after the Big Bang. Conversely, what happened after is quite
clear: a tiny fraction of a second after the Bang (approximately 1073* s), the Universe started a
process of inflation by which it increased its size over 9o times, going from sub-atomic scales to
the size of a tennis ball almost immediately. After the inflation, the expansion of the Universe
continued, but at a slower rate. During the first three minutes, the temperature reduced from
100 nonillion (102) to a mere billion (10°) Kelvin, and protons and neutrons were able to collide
and stick together to form deuterium, an isotope of Hydrogen. The fusion process generates
gamma radiation (high energy photons), which constitutes the first appearance of light in the
Universe. However, at this point the Universe was so hot, that it was mainly made of a dense
plasma of electrons, protons and neutrons, which scattered light like the fog on a cold night.
About 380000 years after the Big Bang (which is 13.7716 billion years ago), matter cooled down
enough for the first atoms to form and the plasma gave way to a transparent gas, which let loose
the first flash of light of the Universe. This is the earliest light that we can see. The evidence
of such a burst of light is the so-called Cosmic Microwave Background Radiation, which was first
measured (by accident) by Arno Penzias and Robert Wilson in 1964. Since then, large efforts
from space agencies have made possible to have a full-sky map of this radiation, shown in
Fig. 1.1. The precise understanding of our Universe’s origin and evolution is chiefly thanks
to this relic radiation that has been roaming the universe ever since it let light loose. In the
words of James Peebles, who got awarded half of this year (2019)’s Nobel prize for his work on
explaining this structure: “the 3K thermal cosmic microwave background radiation shows that our
Universe expanded from a hot, dense state, just as fossil bones and footprints show that dinosaurs walked
the face of Earth.”

Figure 1.1: Cosmic background radiation show-
ing the fluctuation in the temperature (shown
in different colors and with a range of 200 uK)
that took place during the lifetime of the Uni-
verse. Image taken from the ESA’s Planck satel-
lite. The understanding of this structure was
awarded half of this year’s Nobel prize.
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Figure 1.2: Cédice Matritense (Codex of Madrid) recording the birth and death of the moon, according to
the cosmogony of the Aztec civilization (left). Light permeated the indigenous society to such a degree,
that their architecture was filled of symbolism. In the pyramid of Chichen Itza (made by the Mayans), at
the sunset of the Equinox, the stairs that lead to the temple are illuminated by the sun in such a way that
one can identify a serpent crawling down from the temple (right). The pyramid has four staircases, and
each of them has 91 steps. Thus, the sum of all the steps plus the temple on top of the pyramid is equal to
365: the number of days in a solar year.

Of course, these measurements were not the first contact that Humans had with Light.
Ancient communities had a close relation with it, which still dictates our vital cycles. We are
more active during the daylight hours than during night-time (in fact, only about 20% of the
mammals are diurnal), and the cycle of the Earth around the Sun rules the times for planting
and harvesting crops, as well as other agricultural activities. People knew these facts from their
experience, and transmitted them orally, even before the dawn of Science. They also endowed
light with mystical properties. For instance, the Egyptians believed that day and night were
ruled by the act of vision of Ra, the god of the Sun: whenever its eye was open, there was
day, and when its eye was closed, there was night. Various indigenous people on the northern
hemisphere gave different interpretations to the phenomenon of northern lights: the Inuit of
Canada and Greenland, the Saami in Sweden, Finland and Russia, and other tribes in Siberia
believed that the northern lights were the souls of the people who died through loss of blood
(regardless of the specifics of their deaths). For the Aztecs, life was a gift from the Sun, and
it was through the illumination that beings became alive. This had a deep relation with their
understanding of the days, months and years. The days were the constant struggle between life
(represented by the blue color of the sky during the day) and death (represented by the blood
red of the sunrise and the purple of the sunset). The months were linked through the cycles of
the moon, which they understood perfectly and which are recorded in the Cédice Matritence
(Codex of Madrid, shown in Fig. 1.2):

1. Cuando la luna nuevamente nace, parece como un arquito de alambre delgado, aiin no
resplandece, y poco a poco va creciendo, (When the moon is reborn, it looks like a thin
arch of wire, it still doesn’t shine, and little by little it starts to grow)

2. a los quince dias es llena, y cuando ya lo es, sale por el oriente. (fifteen days later it is
full, and once it is, it rises from the east)

3. A la puesta del sol parece como una rueda de molino grande, muy redonda y muy
colorada, (At the sunset, it looks like a huge wheel from a windmill, rounded and
maroon)
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4. y cuando va subiendo se para blanca y resplandece; aparece como un conejo en medio
de ella, y si no hay nubes, resplandece como el sol a medio dia; (and when it rises, it
stays white and shiny; a sort of rabbit appears on it, and when there are no clounds, it
shines like the midday sun)

5. y después de llena cumplidamente, poco a poco se va menguando hasta que se va a hacer
como cuando comenzo; (and right after reaching its apex, little by little it shrinks until
it becomes like when it started)

6. dicen entonces, ya se muere la luna, ya se duerme mucho. (and they say, the moon is
going to die, the moon is going to sleep)

7. Esto es cuando sale ya con el alba, y al tiempo de la conjuncion dicen: “ya es muerta la
luna” (Then, when the sun rises, and at the time of the conjuction, they say: “the moon
is dead”)

Every empirical observation that the Aztecs made on the luminosity was defined by tonalities,
which in turn were related to the processes of life and death. The Mayans, on the other side, were
gifted astronomers and their relation with light and the sun permeated all of their activities. In
particular, one can still see the way in which they used the shape of their pyramids to announce
important dates of the calendar, such as the Equinoxes. In Chichen Itza, the light that the
sun shines towards the pyramid makes the illusion of a serpent crawling down to Earth (cf.
Figure 1.2), letting them know that the soil is ready for planting (in March) and harvesting (in
September).

The earliest formal studies on the nature of light can be attributed to the Greeks. Their
school of natural philosophy bloomed with the work of many great minds such as Democritus,
Epicurus, Plato and Aristotle, and their first approach to light was to understand vision.
Democritus believed that the air between an object and the eye contracted and was stamped
with the details of the object. Thus, in a sort of propagation, the air reached the eye and the
vision was completed. Conversely, Epicurus believed that we are able to see objects, because
they are sending “atoms” to our eyes (and he explained that the objects didn’t run out of atoms,
because they were readily replenished by other particles). Plato and his followers thought that
the eyes emitted rays of light, which, after being scattered, allowed us to perceive the size, color
and shape of the objects.

During the golden age of the Islamic science, many of the Greek theories were debunked and
the understanding of light and vision was deepened. Al-Kindi followed the steps of Euclid—
who used geometry to understand the phenomena of reflection, refraction and the appearance

Descartes

Figure 1.3: Light has always been a chief topic of scientific inquiries, even when Science itself was not yet
a fully-fledged discipline or method. The primitive theories of light relied on the mathematical apparatus
then available, namely, geometry, with results discovered over and over again, in the hands of Euclid
(300BC), Alhazen (c. 1000) and Descartes (c. 1650) as some of the most significant thinkers of their
respective eras.

3



PRELIMINARIES

of shadows—and studied the shadow cast by several opaque objects, to prove experimentally
that light travels in straight lines. Furthermore, together with ibn-Sina (known in the occidental
world as Avicenna), he argued that light could not emanate from the eyes, as it would have to
fill an infinite amount of space every time we open our eyes. The culmination of optics in the
Arab world was carried by the prolific Abu Ali al-Hasan ibn al-Hasan ibn al-Haytham, known
in the west as Alhazen, who is often regarded as the greatest physicist between Archimedes and
Newton. His most important contribution to the field of Optics was his Book of Optics (Kitab-al
Mangzir), in which he tackled the nature of light, the physiological aspects of the eye and the
vision, as well as the way in which lenses and mirrors can bend and focus the light. He proved
that the theory of the light emanating from the eye was wrong, and that instead light was
emanating from sources. He did this through a simple experiment in a dark room: on one of
the walls he made a small hole. Outside of it, he placed a pair of lanterns at different heights,
which cast a spot of light inside the dark room. When he covered one of the lanterns, he saw
the spot of light inside the room disappear. Thus, he concluded that light was coming from
the lantern, rather than from the eyes. Based on this experiment, he invented the first pinhole
camera and explained why the image in it was inverted.

Light has played a fundamental role not only in Science but also throughout the history of
Art: from the mere consideration of how different colors mixed together gave the impression
of different environments, to being the center of attention of a work of art. In ancient Egypt,
the masks of the pharaohs were tainted with gold to highlight their divinity. In the Christian
world, it was not the faces but the regions around the people (such as the halos) that were
enlightened to give the sense of superiority and holiness. With the advent of the Renaissance
and the mastering of light by the Italian school, led by da Vinci and Caravaggio, the world met
the chiaroscuro, a technique with which light and shadows are blended, giving the paintings a
completely new dimension (cf. Fig. 1.4, left). In the 17" century, light is no longer a tool for the
artist to highlight a specific region of the work, but it becomes rather a central figure. This is
particularly noticeable in the work of Vermeer, in which light not only is the key subject but also
brings volume to the painting. With the onset of impressionism, light is completely reinvented
and the objects are not what is painted but what is interpreted by the beholder. In the modern
times, some painters have perfected the use of light and masterpieces from which light appears
to leave the canvas have been created. Hosted by the Hermitage in St. Petersburg and by the
Museo del Prado in Madrid, Ivan Aivazovsky’s “The Black Sea at Night” and Joaquin Sorolla’s
“Nifios en la playa”, shown in Fig. 1.4, are perfect examples of the mastery of light in paintings.

Figure 1.4: On the left is Caravaggio’s “The supper at Emmaus” (1601), which epitomizes the chiaroscuro
technique, using the light to point us to the important characters of the work. At the center, is Ivan
Aivazovsky’s “The Black Sea at Night” (1879), in which the light from the moon appears to be coming out
of the canvas and thus illuminating the room. On the right is Joaquin Sorolla’s “Nifios en la playa” (1916),
whose mastery of light almost makes you feel like you are in the Mediterranean coast witnessing this
scene.
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Newton Maxwell Einstein

Figure 1.5: The greatest minds of modern Science have also pondered on the nature and properties of
light. Newton (1642-1727) championed the corpuscular theory of light, despite ample opposition (and
evidence) and gathered a huge amount of fundamental results in his treatise Opticks, from ray-optics to
the naming of the colors in the rainbow. Maxwell (1831-1879) put together in a closed and consistent form
the equations of electricity and magnetism, out of which he identified light as an electromagnetic wave.
This is widely regarded as one of the greatest intellectual feats and the first great unification of Physics.
Einstein (1879-1955) orchestrated the coup-de-théatre that brought back the corpuscular theory of light to
the foreground, making a decisive step towards Quantum Mechanics, which interpretation he would later
challenge with his concept of ‘element of reality’ through the so-called EPR correlations.

1.1.2  Modern description: Maxwell equations

The scientific revolution started with the Polish astronomer and mathematician Mikotaj Kopernik
(Nicolaus Copernicus in Latin). Before Newton’s theory of gravitation, the heliocentric model
of the Universe theorized by Copernicus was difficult to accept (even though it simplified a lot
the calculations of the orbits of the planets). Although Copernicus died before his theory was
published (his ideas were held as heretic by the Catholic church), it was the spark that lit the
way towards the development of the European Science. The beginning of this revolution was
more fruitful in the protestant countries, where the influence of Rome and the Catholic church
was weaker. Living in Germany, Johannes Kepler became interested in astronomical events, and
while observing an eclipse with a pin-hole camera, he noticed that the image of the moon as
seen through the camera was larger than when it was observed directly. Kepler understood
that such an important feature was due to the size of the pin-hole, and his thorough study of it
yielded a theory of the radiation propagating through apertures, based on the fact that rays of
light travel in straight lines. In the mean time, the French school of optics was led by Descartes,
who derived the laws of reflection and refraction of light (although the credit of the discovery is
often given to Willebrord Snellius, who derived these laws using trigonometry), and by Pierre
de Fermat, who developed Snell’s law using the principle of least time, according to which the
propagation of light takes place along the path that makes it reach the final point in the least
amount of time.

On the other shore of the English Channel, Isaac Newton was developing the theory of
gravitation, for which he had to invent calculus, but he also made large contributions to the
field of optics. He showed that color was a property of light and not of the medium in which it
propagates, and using a prism he established that white light, like the one that comes from the
sun, is in fact a superposition of all the colors. He then demonstrated that the light of a single
color was not split again when passing through a prism, and that recombining all the colors
yielded again white light. Studying the way in which lenses and mirrors worked, he was able
to design a telescope operating in reflection (up to then, all the telescopes were fabricated to
operate in refraction), which suffered much less chromatic aberration. The idea was so clever,
that modern telescopes are merely more precise versions of the newtonian telescope.
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Figure 1.6: When classic meets modern.
Below is the cover page of Newton's
Opticks, in which is developed the theory
of optics, including the dispersion of light
by which a beam of white light can be
decomposed into the seven colours of the
rainbow. On top, one of the marvels that
technology can achieve with Light, with
a display made of OLEDs (organic light
emitting diodes), with a pixel density of
448 pixels per inch.

Newton also theorized about the nature of light. He was an advocate of the corpuscular nature
of light, thus believing that it was made of minuscule corpuscles, as opposed to matter, which
was made of larger particles. However, even at that time, there was evidence that light behaved
as waves. Huygens published an oscillatory theory of light in his Traité de la lumiere (Treatise on
light), which was supported by Romer’s experiment showing that light propagates at a finite
speed. However, it was not until the beginning of the nineteenth century that Young showed
that light behave as a wave, thus supposedly proving Newton wrong. In the words of Young;:

...when a beam of homogeneous light falls on a screen in which there are two
very small holes or slits, which may be considered as centers of divergence, from
whence the light is diffracted in every direction. In this case, when the two newly
formed beams are received on a surface placed so as to intercept them, their light is
divided by dark stripes into portions equal, but becoming wider as the surface is
more remote from the apertures, so as to subtend very nearly equal angles from the
apertures at all distances, and wider also in the same proportion as the apertures
are closer to each other. The middle of the two portions is always light, and the
bright stripes on each side are at such distances, that the light coming to them from
one of the apertures, must have passed through a longer space than that which
comes from the other, by an interval which is equal to the breadth of one, two,
three, or more of the supposed undulations, while the intervening dark spaces
correspond to a difference of half a supposed undulation, of one and a half, of two
and a half, or more.

By repeating this experiment, Young was able to connect the color of light to the wavelength of
the undulations, and was able to identify approximately the wavelength of the seven colors that
according to Newton composed white light.

It was with the industrial revolution, and the experiments with electricity and magnetism
that the theory of electromagnetism took its final form. The works of André-Marie Ampere,
Charles-Augustin de Coulomb and Michael Faraday laid the basis of the theory, which James
Clerk Maxwell unified with his famous set of four equations

%.E:ﬁ, §-§=O, (1.1a)
€0
%xE:—%—?, 6x§=y0f+yoeoaa—f, (1.1b)

where E (resp. B) is the electric (resp. magnetic) field, p is the density of electric charges, J
is the density of currents, and ¢, and i are the permittivity and permeability of free space,
respectively. A simple algebraic manipulation, taking the curl of Egs. (1.1b), using the vector
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identity Vx(VxA) =V(V-A) - V24, and assuming that there are no sources of charges or
currents, yields a pair of wave equations for the electric and magnetic field

. 2F
vE=L9E

25 _ 10%B
c2 or?

s and V°B = czﬁ’ (1.2)
where ¢ = 1/, /ey is the velocity at which these waves propagates, i.e., the speed of light, thus
settling the nature of light as waves. After Maxwell unified the theory of electromagnetism and
predicted that light propagated as a wave, a large effort was put all across Europe to either
demonstrate of refute the prediction. After only twenty four years, in 1888, a doctoral student
of Helmholtz, Heinrich Hertz, built in his laboratory the first radio wave transmitter, thus
demonstrating the reality of electromagnetic waves.

Maxwell’s equations (cf. Eq. (1.1)) constitute the full description of Light according to the
classical theory. However, by the end of the 19th century, evidence started to pile up suggesting
that not all observations were compatible with the classical theory, and that there was a need
for a new theory. Indeed—Quantum Mechanics—would change Physics forever.

Technology could nevertheless develop tremendously based mainly on the classical theory
alone and the quantum character of Light has mainly remained a question of fundamental
interest. However, with the advent of the information age, where performance and efficiency
are never enough and the barrier of classical physics are quickly approached, the emergence of
quantum light in all aspects of human endeavors becomes every day more perceptible. With the
announcement by Google of Quantum Supremacy at the time of writing, we might be entering
in the technological quantum age.

1.1.3 Light in our lives

In our contemporary world, light is all around us. Even during the night. We are naturally
drawn towards shiny objects, and we now have a myriad of bright displays battling for our
attention: computers, televisions, advertisements, mobile phones, tablets. A short stroll down
Shinjuku in Tokyo, Piccadilly Circus in London, or Times Square in New York, would suffice to
see how far we have come from the early days in which light had a mystic component. Light
is so abound around us, that many youngsters have never had the chance to see the Milky
Way on a cloudless night, simply because there is so much artificial light blinding us. The
Starlink project of SpaceX has even launched a series of satellites into orbit to provide internet
connection in a fashion similar to GPS, making it accessible anywhere on Earth. One problem
with this is that the satellites are visible and, when there are enough of them, we will not be
able to see the real stars anymore, but an uncanny mesh of artificial ones.

On a more relatable scale, the screens of our mobile phones, omnipresent, shining on our
faces, are there reminding us that the world keeps on revolving around us, and it has become
practically impossible to disconnect from it. Understanding the relationship between light

Shinjuku, Tokyo Piccadilly Circus, London Times Square, New York City

Figure 1.7: Light pollution in metropolises: Shinjuku in Tokyo (left), Picadilly Circus in London (center)
and Times Square in New York City (right) are only the most brilliant examples of the magnitude of the
light pollution that brightens our nights.
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and electromagnetic fields has revolutionized technology. The advent of the Internet, initially
thought of as a an efficient way to share large amounts of information collected from the
experiments at CERN (Centre Européen de la Recherche Nucléaire), has become global and
now it enables us to know, in a fraction of a second, what is happening on the other side of the
Earth. The information, represented by a stream of zeroes and ones, is encoded into light and
then travels vast distances, across continents and oceans, by fiber optic cables.

All these electronic devices require energy to work, and the 21'" century came together with
the alerts of global warming. We are using too many dirty energy sources (fossil fuels, coal,
gas, among others) which are changing the climate and in the long term will end up reducing
our quality of life. Thus, a part of the scientific community is facing the problem of making
green energy sources as available and efficient as the ones we are currently using. One of the
most obvious sources of (free) energy is right in front of us, and for millennia has captivated
us: the Sun. Nature is wise, and evolution has made plants very efficient at capturing and
converting light from the Sun into useful energy for their sustenance. The eyes of fishes living
in the deepest regions of the oceans have evolved in such a way that they are able to catch
single photons. Recent research by Tinsley et al. (2016) shows indications that the human eye is
also able to observe single photons. In comparison, the most efficient solar panels available to
date reach a 23% of efficiency, which is somewhat far away from the 30% nominal efficiency that
according to Stryer (1981) is obtained by the photosynthetic process. Thus, one upcoming task
for scientists is to achieve or exceed such a level of efficiency of detection and manipulation of
light, using artificial materials.

1.2 QUANTUM LIGHT
1.2.1  Quantum Mechanics brings Photons

The dawn of the 20" century has been crucial to Physics. The classical theory of Electromag-
netism, one of the most beautiful theories that the human mind has developed, was not able to
account for the thermal emission of an ideal emitter (a simple black box). The classical equation
predicted that the intensity of light emitted at ultraviolet wavelengths (less than 400 nm between
consecutive maxima of the wave) was diverging. Clearly, this could not be right, as it implies
that matter would radiate all its energy until it reaches the absolute zero, and the problem
was coined as the “ultraviolet catastrophe”. Max Planck deduced an expression for the spectral
distribution of the intensity which fitted nicely with the experimental results. However, to write
it, he had to make an unfounded assumption: the electromagnetic energy can only be emitted
or absorbed in bundles—which he called quanta—of energy, namely

E =nhv, (1.3)

where E is the electromagnetic energy, n is an integer number, £ is a constant of proportionality—
which later became known as “Planck’s constant”—and v is the frequency of the wave.

At around the same time, Hertz noticed that when a beam of light was directed onto a metal
plate, it induced some sparks: there was an electrical current induced by the incoming light.
This, however, was not surprising, as by then it was known that electrons in metals are easy
to detach from the atoms, provided that you gave them enough energy. What puzzled Hertz
was that in different materials, the sparks began to appear at different “threshold” frequencies.
Furthermore, Hertz noticed that increasing the brightness of the beam produced more electrons
(a larger current) without increasing their energy, while increasing the frequency of the beam
increased the energy of the electrons without increasing their amount. This became known
as the photoelectric effect, and it was not until a few years later that Einstein (1905) managed
to explain it: He realized that Planck’s assumption on the quantization of the energy of light
was not merely a mathematical trick to make the equation fit the experiment, but that it was
rather the true nature of light. In fact, according to Einstein, light is not a wave but a stream of
particles whose energy is related to their frequency v through Planck’s relation, E = hv. Thus,
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the explanation of the photoelectric effect was reduced to a problem of elastic scattering: if the
photon that impinges onto the metal has enough energy—or equivalently, a frequency above
the threshold for excitation—it could collide with an electron of one of the atoms and detach it.

Einstein’s understanding of light and the elegantly simple explanation of the photoelectric
effect were the main reason for which he received the Nobel prize in 1921 (although by then
he had also explained the Brownian motion, he had stated the equivalence between mass and
energy, and he had developed the special and general theories of relativity, all recognized
as “services to theoretical Physics” in his Nobel nomination). Furthermore, by realizing that
Planck’s hypothesis was in fact a physical reality, Einstein brought to life the Photon—the
quantum of light—which gives another proof of the quantized character of Nature, and is the
central physical object of this Thesis.

The 20" century watched the birth and quick development of Quantum Mechanics. While
the first part of the century was devoted to the understanding of atoms, the scientific efforts
turned to the study of the way in which electromagnetic fields interact with matter. These
efforts quickly led Schawlow and Townes (1958) to the development and fabrication of the
Maser, which used the newly discovered (also by Einstein) stimulated emission to generate a
highly coherent beam of light. Such a coherence made the beam almost monochromatic and
allowed it to propagate through long distances without dispersing. While the energy of the
light emitted by the maser corresponded to the microwaves, some years later Maiman (1960)
built for the first time such a device emitting light in the visible range of the electromagnetic
spectrum. The latter was coined as the Laser, changing the M of Maser (coming from Microwave)
for an L (corresponding to Light, as visible light is what people commonly recognize as Light).
We are now already at the stage where the concepts of interest in this Thesis can be brought
to critical analysis and further developed, so we move on to the parts of the theory that are
required to obtain the results that I will present in the subsequent chapters. From this point
onward, the discussion will be consequently more detailed.

1.2.1.1  Formalism

The dynamical aspect of quantum mechanics can be studied in different ways, depending on
the mathematical objects that encode the temporal dynamics. The state of a quantum object is
written down as a wavefunction, noted as |y (r, 1)), which describes the density of probability
to find the quantum object at the position r in space at time . When the quantum object is
subjected to a Hamiltonian with an operator A (we have used the " notation to highlight that
the object is an operator), its wavefunction evolves according to the time-dependent Schrodinger
equation

ihd, ly(r,0) = H |y(r,1) . (1.4)
where 7 = h/2x is the reduced Planck constant. Formally, the wavefuction of the quantum
object is a vector within the Hilbert space of the system. There, one also finds the operators
associated to the object, among which are the so-called “observables”, whose mean values can be
measured directly in an experiment. For instance, the mean value of the Hamiltonian operator,
(H), is the average energy of the object. The formal solution to Schrédinger equation for a
time-independent Hamiltonian can be obtained by integrating Eq. (1.4):

lw(r,0) = exp(—iHt/h) [y(r,0)) , (1.5)

where |y (r,0)) is the state of the system at the initial time # = 0. Once the wavefunction in
Eq. (1.5) is obtained, we have all the information about the quantum object, and we can compute
all the probabilities that we deem relevant: given an operator O on the Hilbert space of the
quantum object, the mean value of the operator at time ¢ is given as

(0O)Y®) = (w(x,n| O ly(r,n) , (1.6)

where (y(r,1)| = |y (r, t))*. Note that in Eq. (1.6) all the information about the dynamics of the
system is encoded in its wavefunction |y (r,)). This is referred to as the Schrodinger picture of
Quantum Mechanics.
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Manipulating Eq. (1.6) by replacing the wavefunction by its definition, given in Eq. (1.5), we
find

(O = (w, 0| O ly(r,n) ,
= (p(r,0)] /MO N |y (r,0)) (1.7)
= (p(r,0)| O@t) ly(r,0)) ,

where we have defined the operator O as a function of time as O(r) = e Ht/h O =M1/ h which is
the formal solution to the Heisenberg equation for the operator O:

ind,0 =[H,0], (1.8)

where H is the Hamiltonian operator in Eq. (1.4) and [A,0] = HO - OH is the commutator.
Note that in Eq. (1.7) the mean value is computed through the initial condition of the wavefuc-
tion, and all the temporal dependence is in the operator rather than in the wavefunction. This is
referred to as the Heisenberg picture of Quantum Mechanics, and is completely equivalent to the
Schrodinger picture.

In the descriptions above, we have assumed that the Hamiltonian that rules the dynamics of
the system is independent of time. However, this is not always the case. In particular, one of the
Hamiltonians that we will used extensively throughout this Thesis, describing the excitation
of a quantum object by a coherent field (such as the one generated by a classical laser), is
time-dependent. It is given by

H, = ho,a'a+hQ (e L'a’ +e®Lig), (1.9)

where w; is the resonance frequency of the coherent field, which drives with intensity Q, a
quantum field with natural frequency w, described with the so-called "annihilation operator" a.
This is the ladder operator of the harmonic oscillator (see Feynman (1998) for an excellent
introduction), which upgrades in the context of “second quantization” to the operator that
subtracts one particle from the field. Its hermitian conjugate, a', is consequently the creation
operator, that adds a particle. Second quantization is the quantum formalism that describes
systems with a varying number of particles, a trademark of quantum field-theory in general and
of optics in particular, where photons get constantly created and absorbed. The time-dependent
Hamiltonian in Eq. (1.9) makes the evolution of the state of the system more complex than

Planck Schrodinger Heisenberg Dirac

Figure 1.8: The fathers of quantum mechanics. Plank (1858-1947) solved the ultraviolet catastrophe making
the assumption that the energy of the electromagnetic field could only be transmitted in bundles of
energy, thus introducing the concept of quantization. After Einstein’s theory for the photoelectric effect,
Schrodinger (1887-1961) and Heisenberg (1901-1976) developed (independently) the formalism of Quantum
Mechanics. Dirac (1902-1984) extended it to account for relativistic effects.



1.2 QUANTUM LIGHT

in Eq. (1.5). We can suppress the temporal dependence by transforming the Hamiltonian in
Eq. (1.9) into a frame that rotates with the same frequency at which the laser is driving the
system. To do so, we need to split the Hamiltonian in two components:

H@®)=Hy+V(@)), (1.10)

where H,, is completely independent of time, whereas all the temporal dependence is kept in
the term V' (¢). In agreement with the Schrodinger picture, the evolution of a wavefunction due
to the time-independent Hamiltonian H is given by

ly (1)) = Uy(2,0) lw(0)) , (1.11)

where U(1,0) = e Hot/h propagates the wavevector |y (#)) in time, and satisfies the differential
equation
ino,Uy(t,0) = HyUy(2,0). (1.12)

However, this function does not take into account the time-dependent part of the Hamiltonian,
and as such it does not describe accurately the evolution of the system.
Conversely, we may define a new state vector |¥(f)) as some rotation of the state vector |y (7)),
namely
Y0y = ROIw@)  and  y(®) = R'O)¥0) (1.13)

where R() is a function still to be determined. Taking the temporal derivative of Eq. (1.13) we
obtain (for simplicity, we drop the explicit temporal and spatial dependence of the operators
and wavefunctions)
iho, |¥) = ihd, (R |y)) .
ih(0,R) ly) +ihRo, |y) ,
ih(0, AR" |¥)+ RH |y) ,
in(0,R)R' |¥) + RHR' |¥) ,
[in(0,RIR" + RHR'| |'P) , (1.14)

which is a Schrédinger equation for the wavevector |¥) with a modified Hamiltonian H =
in(0,R)R" + RH R'. The choice of the function R(t) depends on the specificities of each system.
This transformation is commonly referred to as the interaction or Dirac picture of Quantum
Mechanics. For the Hamiltonian in Eq. (1.9) the transformation that removes the temporal

dependence is R(f) = e"h‘”L’“T“, and the Hamiltonian in the rotating frame becomes
H, = h(w,—wy)a’a+hQ,a" +a). (1.15)

With the formalism that we have introduced above the description of the temporal evolution
of a quantum system is limited, since the propagator of the state is given by the Hamiltonian
only, which, being always an hermitian operator, cannot describe dissipative processes. To
include such effects into the description, we need to upgrade the wavefunction of the system to
a “density matrix” p. If the state of the system is pure (that is, it can be written as a wavefunction),
then the density matrix of the state is given by the tensor product between the ket (|y)) and the
bra ((w|) associated to the system: p = |y) (w|. As such, the dynamics of the density matrix is
deduced directly from Schrédinger equation (1.4):

0,0 = O, ly) (wl+ lw) 0, (wl),

S lw) (wl+ L lw) (wl H,

7 7
i i

= tH,+L,m,
R PTR?

= %[p, H], (1.16)

11
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which is known a the Liouville—von Neumann equation. This equation describes the system
assuming that all the degrees of freedom are taken into account. However, in general it is
impossible to satisfy such a condition. A realistic description of a quantum system needs to
take into account that the system is not isolated from the rest of the Universe, but rather that it
is in contact with it. Therefore, there exists a larger Hamiltonian that describes the complete
dynamics of the system of interest with the rest of the environment. Such a Hamiltonian has
three contributions

H=Hg+ Hy+ Hgq,g, (1.17)

where Hg describes the dynamics of the systems on its own, Hy describes the dynamics of
the environment on its own, and Hg, describes the coupling between the system and the
environment. Obtaining the solution for the wavefunction as in Eq. (1.5) becomes intractable
since the number of degrees of freedom of the environment increases. However, even though we
are taking into account all the degrees of freedom, we are still only interested in the dynamics
of the system. Thus, if the state of the system plus environment (that we will refer to as A ® R)
is given by a density matrix A(?), then we will be interested only in the reduced density matrix,
that we obtain by tracing all the degrees of freedom from the environment, thus defining

p(t) = Trg[A)]. (1.18)

In this way, if O is an operator in the Hilbert space of our system, then the mean value of the
operator is given by

(0)(t) = Tr 3o r[OA®)] = Trg{O Trg[A(1)]} = Trg[Op(1)]. (1.19)

The objective is now to obtain an equation for the reduced density matrix p(f) with the properties
of the environment entering in the description only as parameters. The details on how to get to
the equation governing the reduced density matrix are textbook material, and are particularly
well explained by Carmichael (2008). The result that one obtains is that the dynamics of the
reduced density matrix is given by a so-called Master equation of the type (from here onward,
we set i = 1):

. 1
atﬂ=l[P,H]+§ ;EL,CP’ (1.20)

where we have used the notation
Ly p= (2LZka + L L+ pLZLk) . (1.21)

In Egs. (1.20-1.21), the operators L, are typically referred to as the jump operators of the system,
and they are responsible for changing the state of the system by, e.g., removing or adding
particles. Note that there is no issue with the conservation of energy, as the particles that
are removed or added come from or go to the environment (which we have traced out).
Equation (1.20) is commonly referred to as the Master equation in the Lindblad form, and to get
there two important approximations had to be made:

1. The Born approximation: We assume that at the time ¢ = 0, there are no correlations between
the system and the environment, so that A(0) = p(0)R,, where R is an initial environment
density operator. At later times, the interaction between the system and the environment
induces correlations between them. However, we assume that the environment is large
enough to be unperturbed by the system (while the latter is clearly affected by the former!),
so that at any given time A(?) = p(*)R,.

2. The Markov approximation: While it may be reasonable from physical arguments that the
state of our system depends on the history of the state, if the environment with which the
system is in contact is itself in thermal equilibrium, we also do not expect it to preserve
the minor changes induced in it by the interaction with the system for too long. At least
not long enough to change significantly the future evolution of the system. In other words,
we assume that if I'; and I; are operators of the environment, then their correlations are
localized in time: (I';()T";('))g « 6(t — '), where § is the Dirac delta function.
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Together, these two conditions are known as the Born-Markov approximation, and it relies on the
existence of two scales of times: a slow one for the dynamics of the system and a rapid one
describing the correlations of the environment.

As an application, let us consider a harmonic oscillator driven by a laser. The Hamiltonian
describing this system is given by Eq. (1.9), which in the frame that rotates with the frequency
of the laser becomes the Hamiltonian in Eq. (1.15). Considering that the harmonic oscillator
is in contact with an environment, to which it can lose photons at a rate y,, we can write the
master equation in the lindblad form, as in Eq. (1.20):

. I
o,p=ilp, H]+ Eaﬁap, (1.22)

where H, is the Hamiltonian in Eq. (1.15) and L,p is as in Eq. (1.21). In the steady state, obtained
when the left-hand side of Eq. (1.22) equals zero, the harmonic oscillator is found in a pure
state commonly referred to as a “coherent state”. Using the basis of Fock states |k)—with k an
integer which describes the number of particles contained in the field—the coherent state reads

k
la) = e 1P2 % Xk )
ay=e ; W ) (1.23)

The parameter a is a complex number, which for the coherent state of the harmonic oscillator
described through the master equation (1.22) is given by
2iQ, (v, - 2iA
a = _M R (1'2 4)
y2 +4A2

where we have used the notation A, = (w, — @) for the detuning between the laser and the
oscillator. Furthermore, since the coherent state in Eq. (1.23) is an eigenstate of the annihilation
operator a with eigenvalue «, i.e., ala) = a|a), it is straightforward to show that the mean
population—the average number of photons—of the harmonic oscillator is given by

2
a

—. 1.2
Y2 +4A2 (1.25)

n,=<(a'a)=(ala'ala) = |a|* =

1.2.1.2 Cascaded Coupling

Now that we have laid the grounds to describe quantum objects through the master equation,
we turn to the description of the excitation of a quantum object using the light emitted by
another quantum system, which is the central theme of this Thesis. Usually, when one considers
the coupling between two quantum systems, the description is done through an interaction
Hamiltonian. In the second quantization formalism, such a Hamiltonian reads in its most simple
form:

H, = g(cfcz + c;cl), (1.26)

where ¢y, ¢, are annihilation operators describing the particles of the coupled system, and g
is their interaction strength. If the particles described by ¢; have a decay rate y;, and are freely
evolving with a Hamiltonian H;, i = 1,2, the master equation describing the dynamics of this
system is:

2!
2
where L p is defined in Eq. (1.21). Depending on whether the coupling H; or the dissipation ;
dominates, one speaks of strong or weak coupling, respectively. If one of the two systems,
say, 1, is itself excited externally, for instance being driven by a laser, or merely being given
a non-vacuum initial condition, then one has a crude picture of system 1 exciting system 2.
This is a fairly accurate description in the weak-coupling limit where the dynamics becomes
directional and irreversible, simply because excitation are dissipated by system 2 before they
can cycle back to system 1.

. v
0,p=ilp.H + Hy+ H,]+ %£61p+ Lop. (1.27)
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The coupling between quantum systems does not have to be reversible: it can instead
correspond to the scenario of a source and its target. In this case, there is a deep asymmetry
between the coupled systems. For instance, one can remove the target from the beam of the
source, which leaves the latter unaffected while the former passes from being irradiated to
the vacuum. Note that such an asymmetry does not have to hold on logical grounds. In fact,
in electronics, while an ideal source should not be affected by the circuit it powers, in reality,
there is a load and every component affects all the others to some extent. In photonics, the
picture of a flying qubit, left to propagate long enough before it meets its target, makes it
intuitively clear that it should be possible to forbid back-action. This could also be realized by
taking advantage of the fast-growing field of chiral optics developed by, e.g., Petersen, Volz,
and Rauschenbeutel (2014), Gonzalez-Ballestero et al. (2015), Pichler et al. (2015), Coles et al.
(2016), Mahmoodian, Lodahl, and Sorensen (2016), Guimond et al. (2016), Lodahl et al. (2016),
and Gonzalez-Ballestero et al. (2016).

Gardiner (1993) and Carmichael (1993b) treated (independently) the problem of quantum
excitation without feedback in two consecutive Letters in the Physical Review. This achieved
to set up a formalism—named the “cascaded formalism” by Carmichael—that allows to excite a
system (which we will call the “target”) by an other (the “source”) without back-action from the
target to the source. This permits to think separately of the quantum source, which properties
can be independently studied and then directed onto a target. For historical accuracy, let us
mention that the problem was first contemplated by Kolobov and Sokolov (1987), who tackled
it by providing all the correlations of the exciting quantum field. This was recognized as an
overkill by Gardiner (1993) and Carmichael (1993b) (Gardiner had made prior attempts along
these lines). They proposed instead to model the quantum source’s dynamics as well as the
response of the target, even if only the latter is of interest.

Despite the conceptual importance of quantum excitation, there has been a moderate follow-
up of this cascaded formalism, which I believe is a deep and far-reaching contribution to the
problem of light-matter interaction. Even though it became textbook material (see the last
chapter from Gardiner and Zoller (2000)’s book) and generated a sizable amount of citations,
few texts do actually fully exploit the idea. Gardiner and Parkins (1994) (the formalism is
sometimes also named after these two authors) undertook a more thorough analysis of various
types of non-standard statistics of the source and Cirac et al. (1997) used it to describe perfect
transmission in their proposal for a quantum network, but overall, the core of the literature
using the formalism focuses on specialized particular cases, such as driving with squeezed
light, as is done by Smyth and Swain (1999) and Messikh, Tanas, and Ficek (2000). Typically, the
discussion is then held at the level of correlations from a quantum state (namely a squeezed
state), as opposed to dynamical correlations from a quantum source. The other studies, already

Gardiner Carmichael

Figure 1.9: Gardiner (1942) and Carmichael (1950) developed (separately) the formalism of cascaded
excitations, which readily allows the description of the excitation of an optical target by the emission of a
quantum object.
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evoked, turned to approximate or indirect approaches, quite similar to the earlier attempts
before the cascaded formalism was set up. The reasons for this is certainly a mix between
convenience of using well-known and established formalism and the as-yet unclear advantages
of the alternative one.

The derivation of the cascaded coupling requires the usage of the so-called input-output
formalism, the details of which are given by Gardiner and Zoller (2000). First, the equations of
motion are expressed in the quantum Langevin form, thus allowing to set the output field of
one of the systems (the source) as the input field for the other (the target). This can be brought
to a master equation type of description, with both coherent and Lindblad terms that contrive
to direct the flow of excitation from the source to target only. This makes all the operators of
the source independent from those of the target, while in turn those depend on operators of the
source. The generic case where the source (resp. target) is described by the Hamiltonian H,
(resp. H,) and has a decay rate y, (resp. y,) is then ruled by the following master equation:

2!

2

The source must also be excited, which can be done either by an incoherent or by a coherent

(classical) type of excitation. The incoherent excitation is described simply by adding the

Lindblad term (P, /2)L +p to Eq. (1.28). The coherent excitation, however, requires a subtler
1

. Y
0p=ilp,Hy + Hy] + EIECI/H Lop—A/1172 ([C;cm]HpCI,Cz]) : (1.28)

description, for which one uses the input-output formalism again. The coupling between a
coherent field and the system (that latter will be used as the source of quantum excitation)
happens through an input channel for the said system. If such an input channel is the only
one available to excite the source, then it follows that the only output channel from the
source also contains the coherence of the driving field. In this case, the target of the quantum
excitation is also driven by the coherent field, and its dynamics is given by Eq. (1.28) setting
H, = wlcirc] - i\/ﬂc‘?(cir —¢y),and H, = mzc;cz - i\/zé’(c; —¢,), i.e., the dynamics is ruled by
the master equation:

. ¥ . T .

op=i [p,w]clcl +a)2c;c2 —iyréle, —cp— 1\/y28(c§ - cz)] +
4 72

> 342/)— Vrir <[c;c1p] + [PCI’CQ]> ,» (1.29)
where £ is the amplitude of the coherent field driving the source. Note that the effective driving
intensity, i.e., Q; = /7€, depends on the decay rate of the system that is being excited, in
agreement with the fact that a system that cannot emit cannot be excited either. To prevent the
target to be also driven by the coherent field that drives the source, one can use another input
(and their corresponding output) channel to excite the source (and also the target). Each of
these channels couples with an amplitude ¢; < 1, with the condition that ), ¢, = 1, the sum
being over all the input channels. In this case, and considering only two input channels (with
amplitudes ¢; and €, = 1 — ¢;) as well as only one input channel for the target (with amplitude
1), the dynamics of the system is given by Eq. (1.28) with H; = wchcl - i,/elylé'(cf —c)),

¥

H, = wyc,c,, and replacing the coupling strength /y;7, by 1/(1 — €,)y7,7, in the second line of
Eq. (1.28), i.e., the dynamics is now ruled by the master equation:

+5L,p+

, ¥ ,

Oip=i|p,wic c +a)zc;rcz - l\/elylé'(cir - cl)] +
Hp L0
2 2
where €, = 1 —¢,. The additional input channel to the source makes the coupling between
the coherent field not as efficient as when there is only one input channel, thus reducing the
effective driving intensity. For the target, although the coupling strength is also reduced, now
the driving is uniquely due to the emission from the quantum source.

Putting Eq. (1.28) in the Lindblad form contributes a Hamiltonian part. The formalism thus
corresponds to a quantum coherent coupling, allowing the description of continuous wave

+ ﬁclp + Eczp - €712 <[C;, Clp] + [pCT, C2]) s (1'30)
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(cw) and resonant excitation of quantum states. Importantly, in contrast to the Hamiltonian
coupling in Eq. (1.26), the coupling strength is now fixed by the decay rate of the source and
of the target. An infinitely-lived target cannot be excited. The stronger one wishes to make
the coupling between a source and its target, the stronger has to be their (geometric) mean
dissipation. This imposes some fundamental constrains on external driving (or driving without
feedback). In contrast, the Hamiltonian coupling sets the coupling strength and decay rates
independently. While it would therefore appear that the Hamiltonian coupling has the upper
hand, and that one should strive for the standard strong-coupling regime, we will show in the
following chapters that the cascaded architecture can be superior to the other types of coupling
in some cases and depending on the end purpose.

Finally, as a closing comment on the cascaded formalism—which I will use in this form
following the literature—it is interesting to point out that the Lindblad form (1.20) is complete
enough to actually also describe such asymmetric source/detector scenarios. Indeed, I have
recently shown with Downing et al. (2019) that the cascaded case is a particular case of the
Lindblad equation when one considers that a pair of quantum objects can be coupled through
both a Hamiltonian (which yields a coherent coupling) and a reservoir (which, conversely,
yields an incoherent coupling). The relative phase between these two types of couplings leads
to a quasi-chiral behaviour, from which the cascaded formalism is recovered when the feedback
from one of the systems is completely blocked.

We have now introduced the overall background of light in its quantum setting, up to the
technical details required to describe it theoretically. We will now focus on another central
aspect of this Thesis, which is also for that matter another aspect of the quantum theory of light,
namely, photon correlations. This starts with a beautiful and stunning discovery from one of
the lesser-known heroes of Science.

1.2.2  Hanbury Brown

Robert Hanbury Brown (cf. Fig. 1.10) was a British physicist and astronomer. Born in 1916 in
India to an army officer, he returned to England at the age of 8 to attend school. Early in his
youth, he left the elementary school for the Brighton Technical College, where he obtained a
Bachelor’s degree in Electrical Engineering. It was the second half of the 1930s, and England
still had the memories of the German Zeppelin raids (the first of which took place over London
in April, 1915) stuck in its mind. Thus, a large effort was devoted to the development of
technologies that would help to prevent future air raids; specially those taking place at night

Figure 1.10: Robert Hanbury Brown (1916-2002) pioneered the experiments involving correlations between
photons. He developed an observatory in the Australian desert, in which he placed an interferometer
of radio waves (right). The detectors were placed on top of a circular railing, with 94 m of radius,
which enabled the astronomers to vary easily the distance between the detectors, and thus measure the
correlations in the light coming from distant stars. A new theory of light was needed to account for
Hanbury Brown’s genius intuition that photons would be correlated.
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when the pilots could not locate enemy aircrafts simply by looking at the sky. A possible solution
was to use radars—a secret technique introduced in the United Kingdom by Robert Watson-
Watt, and which consisted in using radio waves (electromagnetic waves whose wavelength
is of the order of meters) to transmit information across large distances—to find the position
of planes while in the air. Although the normal career path for a scientist would have been
to pursue a PhD degree, Hanbury Brown was recruited to work for the government in the
development of technologies involving the radar. In particular, his work focused on how to
optimize the emission and reception of radio signals, in such a way that they could be used
by RAF airplanes to locate other planes while flying. Naturally, this posed great difficulties
and many approaches were taken before finding the best way to incorporate radars into planes.
Thanks to Hanbury Brown and his team’s effort, many air raids were prevented or neutralized
when the second World War broke. By the end of the war, Hanbury Brown was one of the
world’s experts in radio waves, and he turned his “peacetime” activity to the Bernard Lovell’s
radio astronomy group at the University of Manchester. While trying to measure the angular
size of radio stars (emitting light with wavelengths in the scale of meters), he and Cyril Hazard
developed a radio interferometer. With it, they were able to measure the distance between the
two detectors at which the signal from the stars loses its coherence. As the angular size becomes
smaller, the required separation to lose such a coherence increases, to the point at which it
becomes impractical to measure. Then, as Hanbury Brown (1991) recounts:

This problem worried me for weeks and I could think of nothing else, until one
night in 1949 I suddenly thought:

If the radiation from a discrete source in the sky is picked up at two different
places on Earth, is there anything else besides the phase and the amplitude of the
signals which we can compare to find the mutual coherence?

And into my mind came quite clearly the image of a man looking at the “noise-like”
signal received from a radio source on a cathode-ray tube. Supposing, I thought,
there was another man many miles away looking at another identical cathode-ray
tube, would he see the same noise-like signal? If in fact there is a similarity between
what the two men see, could it perhaps, be used as a measure of mutual coherence?

Working out the theory, he realized that he was on the right track, and that if the radiation
received in the two places is mutually coherent, then the fluctuations in intensity of the signal
are also correlated. He then designed an interferometer for the intensity, rather than for the
amplitudes, and started making measurements.

Before designing enormous radio telescopes to look at the stars, he wanted to make sure
that his idea—backed by Richard Twiss’ calculations—was correct, and that they would not be
wasting time and money in a void enterprise. Hanbury Brown and Twiss (1956a) made a simple
experiment in which they measured the correlations of the light emitted by a high-pressure
mercury arc, observing that the light was indeed correlated. The results of the paper caused a
big controversy, with Brannen and Ferguson (1956) reporting a null experiment, without being
able to reproduce the observed correlations. Quickly after that, Hanbury Brown and Twiss
(1956b) showed that the observation was correct, but that Brannen and Ferguson (1956)’s setup
was not sensitive enough, and that it would take them about a thousand years to obtain an
equivalent accuracy in the correlations with their setup. Still, even though the results were
sound, Hanbury Brown and Twiss had trouble getting funding to build a large radio telescope.
In fact, the idea was so revolutionary and the result so unexpected, that at some point Hanbury
Brown was literally thrown a copy of Dirac’s Quantum Mechanics to his face and was suggested
to look at page 14, where Dirac stated that interference between two different photons can never
occur. About this, Hanbury Brown (1991) wrote:

To me the most interesting thing about all this fuss was that so many physicists
had failed to grasp how profoundly mysterious light really is, and were reluctant to
accept the practical consequences of the fact that modern physics doesn’t claim to
tell us what things are like in themselves but only how they behave.
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Time and more precise measurements proved Hanbury Brown and Twiss right. The intensity
interferometer, now known as the Hanbury Brown-Twiss interferometer, has since been used
in a myriad of experiments, including Kimble, Dagenais, and Mandel (1977)’s measurement,
in which the observation of photon antibunching proved the quantum nature of light, and
now the Hanbury Brown and Twiss effect is routinely observed in countless laboratories across
the world. More importantly, the Hanbury Brown and Twiss effect was the starting point for
the modern, i.e., quantum theory of light. This was already recognized by early advocates of
Hanbury Brown’s cause, prominently by Purcell (1956) who understood that “far from requiring
a revision of quantum mechanics, [it] is an instructive illustration of its elementary principles”.
Indeed, Purcell identified the intensity correlations as the results of bosonic fluctuations from
indistinguishable particles (he also predicted the opposite tendency for electrons). In this view,
intensity correlations result from the tendency of two indistinguishable particles to clump
together in their observables (in time, space, etc.) The effect can also be accounted for classically,
as discussed for instance by Baym (1998). The full formalization to cover all cases (including
those with no classical counterpart) came in the form of what is now known as Quantum
Optics.

1.2.3 The birth of Quantum Optics

The discovery of correlation in the intensity of light by Hanbury Brown was made with so-called
thermal light, namely from light emitted by a chaotic source (a star; note that Hanbury Brown
was still calling it “coherent light”, in the sense of “spectrally filtered”). At the same time, the
laser was providing a new type of light, and this also came with its own type of correlations.
There was a need to describe all this, especially as the Laser quickly became a fundamental tool
for research, taking a central role in laboratories across disciplines, from Physics to Chemistry,
Biology and even to Medical sciences. The description of the light emitted by a laser was in
principle within the dominion of the theory laid by Dirac as part of the Quantum Theory of Fields.
More to the point, the development of the theory to describe the electromagnetic field generated
by the laser was formulated independently by E. C. George Sudarshan and Roy ]. Glauber.
Sudarshan (1963) published a paper where he showed that the light emitted by a laser could
be described both through a semiclassical theory or a fully quantum mechanical one, and
that these two descriptions would be analogous. There, he introduced the so-called “diagonal
representation” and showed that any state of light, classical or quantum, could be expressed in
such a diagonal form:

o= / P(@)|a) (al da. (1.31)

where p is the density matrix of an arbitrary state of light, P(a) is a kernel that needs to be
determined, and |a) is a coherent state, as defined in Eq. (1.23). Here, p is diagonal in the
basis of coherent states. A couple of months later, Glauber (1963) published a paper criticizing

Figure 1.11: Sudarshan (1931-2018) and Glauber
(1925-2018) built on the work of Dirac to develop
a theory that describes the electromagnetic field
generated by a laser. Their work was the seed
that later blossomed into the field of quantum
optics. This breakthrough was the main reason
why Glauber was awarded the physics Nobel
prize in 2005 (to the annoyance of Sudarshan).

Sudarshan Glauber
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Sudarshan results and introducing another version of the representation, which he coined the
“P-representation” (as the diagonalization of the state consists in obtaining the P(«) function),
and it is only recently that it has been re-named as the “Glauber-Sudarshan representation” to
acknowledge Sudarshan’s contribution.

The light emitted by a laser can be represented through a coherent state. Using the Sudarshan-
Glauber formalism, a coherent state with amplitude f can be written as in Eq. (1.31) with P(a) =
6(a — p), where 6 is the Dirac function. Although coherent states can be expressed through a
quantum formalism, they are of a classical nature, i.e., they can be fully described with the
classical theory of electromagnetism of Maxwell. Nevertheless, these classical states can be
used as a benchmark for the “quantumness” of other states of light. The comparison is made
through the correlations between the photons that compose the light field. Such a comparison
was formalized by Glauber (1963), who used the second quantization of the light field to define
the “ Nth-order correlation function”:

(a'(t)a’(ty) -+ a’(ty_a’(ty)atty)alty_y) -+ alty)a(t))
(at(tpa(t)))(a’ (ty)a(ty)) - (a (ty)alty))

for which we have assumed that the times 7, are in increasing order, namely #; <1, < -+ < ty.
This quantifies the correlation between N photons emitted at those times. The correlation
functions defined in Eq. (1.32) describe, to order N, how close the fluctuations of the field
are to those of a coherent (and classical) field. A particular case of Eq. (1.32) that we will use
repeatedly throughout the Thesis, and which is widely used across Quantum Optics, is the
second-order correlation function, obtained by setting N = 2:

g™ty 1y, 1y) = , (1.32)

(a'()a®(t + 7)a(t + 7)a(t))
(aT(Da®))a' (t + T)a(t + 1))

g?(1+7) = (1.33)
where we have set 1| =t and t, =t + 7, because in the steady-state condition, the correlations
do not depend on the initial time 7, but only on the delay = between photons. Furthermore, the
delayed correlation (1.33) gives us the information regarding the temporal structure with which
the photons are emitted by the system. According to the behaviour of these correlations we can
classify the emission in three categories:

1. If g@(7) < g@(0), the emission is bunched, as the photons are emitted preferably close to
each other.

2. If g@(r) = 1, the emission is uncorrelated and it behaves like a coherent source of light.

3. If g@(z) > g@(0), the emission is antibunched, as the photons tend to be emitted far
from each other. This scenario is specially relevant, as no classical state can display
antibunching.

As the long time-delay limit of all the second-order correlation function in the steady-state has
to be 1—since the photons emitted with a very large delay between them are not correlated
anymore—sometimes the language is twisted and people refer to g®(0) > 1 as bunching and
to g@(0) < 1 as antibunching. This classification of quantum correlations, first impulsed by
the insights and observation of Hanbury Brown (g®(0) = 2 for thermal light, regardless of its
origin), is the modern definition of optical coherence (no correlation). This will be a central
quantity for the rest of the text so we now proceed to go from the textbook material as reviewed
above to the state-of-the-Art description of these quantities, at which point we will be prepared
to enter into the main results of the Thesis per se.

1.2.4 The observer in Quantum Mechanics

A fundamental aspect of Quantum Mechanics is the fact that the state of an object does not
have a physical reality, until it is measured (see also Hanbury Brown’s comment on page 17).
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The state of light in which photons are emitted by a quantum object is not an exception.
Photon correlations, as introduced by Glauber in Eq. (1.32), being the central quantities in
Quantum Optics, require such a careful consideration of the role of detection. To start with,
these correlations, which arise fully from a theoretical viewpoint, assume two conditions that no
experimental setup can satisfy, namely, when computing the correlations of Eq. (1.32) we assume
that: i) the detector measures the time at which each photon arrives with an infinite precision,
and ii) the detector collects the light from all the emission spectrum of the source. Eberly and
Woédkiewicz (1977) raised this issue early on with regard to the spectrum itself, that is, at the
single-photon level, and concluded that a realistic description of the light field requires the
addition of the physics of the detection process into the theoretical model. This point becomes
increasingly relevant as the source that provides the light is more quantum. The connection
between the quantum system that emits light and what the detector receives is typically done
through the input-output formalism developed by Collet and Gardiner (1984), Gardiner and
Savage (1984), and Yurke (1984), with which one assumes that an operator from the inside
of the cavity (say, an annihilation operator a) is coupled to a continuum of extended modes,
with annihilation operators A, (where the subindex w indicates the frequency of the mode).
Therefore, using the Heisenberg picture (cf. Section 1.2.1) we can compute the power spectrum
of the output field as a time-dependent correlator that counts the photons of frequency w; that
are emitted at some time T;:

SO, T)) = (Al (T)A(T)), (1.34)

which reduces to the well-known Wiener-Khintchine theorem

o
S@) =~+1n / (@} ()a(r))e™" dr . (135)
nn, 0
This theorem, however, does not arise from the analysis of an experimental situation, and in
principle, it only applies to stationary processes. In this light, Eberly and Wédkiewicz (1977)
tackled the problem of finding a generalized version of the power spectrum, with the properties
that one would like to have from such a quantity, e.g., the fact that it must be positive, regardless
of the amount of time in which one collects the light (or compute the correlations) and that the
quantity only has physical meaning for times after it has been emitted from the source. Thus,
they provide another expression, to which they refer as the physical spectrum, in which they take
into account the time- and frequency uncertainty simultaneously: they show that this can be
done simply by making a convolution with the (Lorentzian) detector response function, e,
instead of a simple Fourier transform of the time auto-correlation, which then becomes

r, gh . .
SV T = 5 // i dtl TN~ CDT ) oot g (1yar)y,  (1.36)
T (s

where I'} can be interpreted as the linewidth of the detector. Furthermore, Eberly and Wéd-
kiewicz (1977) show that the physical spectrum in Eq. (1.36) reduces to the Wiener-Khintchine
theorem in the limit in which the timescale 7, of the fluctuations over the signal, and the
correlation time 7; of the emission satisfy the relation z; > l“l_1 > 1.

The extension of including the detection process to photon correlations was impulsed
by Arnoldus and Nienhuis (1984) and Knoll, Weber, and Schafer (1984), in which development
was obtained the expressions allowing for two detectors to have different linewidths I'; and T',.
However, what these expressions had on generality they missed in simplicity, and because
of that, the authors had to restrain actual computations to the simplest case. A few years
later, Knoll and Weber (1986), Knoll, Vogel, and Welsch (1986), and Cresser (1987) arrived to
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the final expression for the correlations as measured by two detectors (and which has a clear
resemblance to its single-detector counterpart shown in Eq. (1.36)):

[1 1 ’ o ’_
?2) T, : T, = _172 1 g —(/2)(T -t —@/2)(T)—t) jiw (1))
Srlrz(a’l’ 1507, 1)) = 2 // dtldt4e ! e 2!y

T2 / ’ . ’
X / dtlzdt; e_(rz/z)(Tz—lz)e_(rz/z)(T2—13)elw2(r3—f/z) <7’_ [aT(t’l)aT(t’z)] ’f+ [a(tg)a(tg)]> s (137)

where we have defined 7, and 7_ to order in time a product of operators with the latest time
on the far left and far right, respectively. This quantity is the density of joint photon detections
at frequencies w, and w,, at the respective times ¢; and t,, with detectors of width I'; and T,.

Both the physical spectrum Eq. (1.36) and its two-photon counterpart (1.37) can be interpreted
in two equivalent ways: either as the result of placing detectors (one and two respectively) with a
given integration time, or as filtering the output with an interference filter (i.e., whose lineshape
is Lorentzian), the output of which is left for another detector (ideal and infinite-bandwidth,
this time). These two pictures are actually equivalent since the detector is performing a filtering
and, conversely, the filtering still requires ultimately a detector (this time an ideal and infinite
broad-band one). This is therefore mainly a question of terminology, and throughout the text,
we will be using either one or the other types of language (i.e., a filter, or a detector). Of
course, one can also consider putting physical detectors post-filtering, or cascading filters, or
considering still other configurations. There too, different physical pictures would be described
with the same formalism.

What equations (1.36) and (1.37) show is that the resolution in the time at which the photons
are emitted is linked, through the Heisenberg uncertainty principle, to the resolution in the
frequency of the photons. Such a limitation does not forbid to observe an object whose photons
display a perfect antibunching, or to observe a perfectly monochromatic source of light. What it
implies, however, is that one cannot observe these two properties simultaneously. One relevant
illustration of Hanbury Brown’s modern Physics claim of “what photons are” as opposed to
“how they behave” is the recent report of Nguyen et al. (2011) and of Matthiesen, Vamivakas,
and Atattire (2012) who claimed to have observed a source of single photons with an ultra-
narrow spectral profile. The idea behind it is simple: consider the resonant excitation of a
two-level system with a laser. In the limit in which the intensity of the laser is weak, the
photoluminescence of the two-level system is given by two components: a Lorentzian with
a width given by the decay rate of the two-level system, and a narrow line centered at the
frequency of the two-level system. The former comes from the photons that are absorbed and
later re-emitted by the two-level system, while the latter is the contribution of the photons
from the laser that are merely scattered by the two-level system. If the intensity of the driving
is weak enough, the emission of the two-level system is dominated by the scattered photons,
and one could argue that the source is spectrally narrow. On the other hand, given that the
emitter is a two-level system, the emitted photons display perfect antibunching. Thus, one has
a monochromatic source of single photons. However, in both papers the observation of the
emission spectrum and of the photon correlations were performed in different experiments and
even using different setups. In chapter 3, I will show how a theory of this effect which includes
self-consistently the effect of detection leads us to the opposite conclusion that only one or the
other characteristic (antibunching or narrow linewidth) can be obtained. Actually, using the
homodyning concept introduced by Vogel (1995), I will show how such an effect can be realized
after all, but with the need of including the impact of the detection.
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1.2.5 Frequency-resolved photon correlations

From the two-photon physical spectrum (1.37) follows straightforwardly the frequency-resolved
second-order correlation function, obtained by normalizing it with the square of Eq. (1.36):

2 .
@ Srlrz(th]’a)ZaTZ)
8rr,
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This is the counterpart of Eq. (1.32) but for photons filtered beforehand, as sketched in Fig. 1.12.
While such a configuration is a trivial step experimentally, this is a daunting task theoretically.
To compute the correlations as in Eq. (1.38) one needs to consider all the possible time-ordering
domains, and once these have been selected, one has to perform six integrals. Naturally, such
a task becomes harder as the temporal structure of the system described by the annihilation
operators a becomes more involved. Furthermore, although Eq. (1.37) can be easily generalized
to account for N photons from a conceptual point of view, it becomes intractable to even write
down the expression to compute, and its actual computation becomes hopelessly complicated
even for the simplest problems, already at the three-photon level.

Few years ago, del Valle et al. (2012) found a simple way of computing the N-photon
correlations (not merely to second order), without the huge effort of computing cumbersome
integrals after considering multiple time orderings and integration domains. The method
consists of including the description of the detectors directly in the master equation governing
the dynamics of the quantum system under study, with a coupling of the type:

H;=¢e@é+&a), (1.39)

where a and £ are the annihilation operators of the quantum system and the detector, respectively.
To solve the already mentioned reversibility problem between a source and its target (a detector),
del Valle et al. (2012) ultimately take the limit £ — 0 of the system. It will become clear shortly
why in their case this limit can be taken. Considering the free energy of the detector—given by
H, = w:£'¢, thus setting the central frequency at which the detector collects the light—the full
description of the system plus detector is then given by the master equation

r
: Y £
a,p = ilp, Ha+H§+HI]+?a£ap+ Eﬁép. (1.40)

Here H, is the Hamiltonian governing the internal dynamics of the system, which has a decay
rate given by y,, Hy is as given in Eq. (1.39), and T’ is the linewidth of the detector. The
generalization to N detectors, all of them with different frequencies, is then straightforward:

N N
. T 1 14 1
dp=i lp, H,+ ) {wgkgkék +e(ate + éka)}] + fﬁap +3 Y TeLep, (1.41)
k=1 k=1

Figure 1.12: Scheme for the measurement of

. . S BS F1
frequency-resolved photon correlations: the sig-
nal (S) is directed towards a beam splitter (BS), ¢ ’
after which the pair of beams is passed through D
two filters (F) with possibly different spectral =& 9
linewidths. Then, the filtered emission goes to
the detectors (D), where the signal is collected
and the correlations are computed. The figure
is taken from Carlos Sanchez Mufioz (2016)’s D2
doctoral thesis.
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where I’ is the linewidth of the kth detector, which collects the light at the frequency w, .
Therefore, the Nth-order frequency-filtered correlation function of the system is given simply by

(N)

gré1 ..TéN(wﬁ’ W ST Iy) =
. (ETaDEN ) & Un_DELANENENEN_1Ey_1) -+ E(1)E (1)) )
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where we have assumed that the times ¢, are in increasing order, namely #; < #, < -+ < f.
This generalizes the photon correlations defined by Glauber (1963) and shown in Eq. (1.32). In
particular, the zero-delay Nth-order frequency-filtered autocorrelation (for which we use only
one detector with linewidth I'; and centered at ;) reduces to

(N
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Interestingly, since both the numerator and denominator of the right-hand side of Egs. (1.42)-
(1.43) vanish to the same order in ¢, one can obtain the exact results for the left-hand side of these
equations as the limit £ — 0. In this way, the frequency-filtered time-resolved photon correlations
can be obtained bypassing the cascaded formalism of Section 1.2.1.2. On the other hand, if one
is interested in, for instance, the filtered average occupation of the system, one would obtain
zero as these quantities are directly proportional to the coupling strength, which is infinitesimal.
These frequency-filtered observables are also of experimental interest. They are required to
measure, e.g., the quantum state of the system, that I have defined with Zubizarreta Casalengua
et al. (2017), where the unnormalized correlations are used to obtain the probability distribution
that the excitations follow within the system. To avoid getting trivial results stemming from the
vanishing coupling, we need to develop a new theory, which is one of the results presented
in this Thesis. Namely, one needs to turn to the Gardiner and Parkins (1994)’s formalism of
cascaded driving presented in Section 1.2.1.2, but upgrading it with the frequency degree of
freedom. Although these two approaches to obtain the frequency-filtered correlations come from
different perspectives, I will show in Chapter 2 that the two methods are completely equivalent,
as far as the correlators are concerned, and the only distinction between them is a technical
one: when using the formalism of cascaded driving, the population of the detector can grow
arbitrarily, and thus the Hilbert space needs to be truncated adequately. Another qualitative
distinction arises when one needs to consider not correlators but observables. The steady-state
solutions of most quantum optical systems can be tackled using the master equation formalism
that we introduced in Section 1.2.1 and using del Valle et al. (2012)’s theory of frequency-
resolved photon-correlations to include the frequency degree of freedom. However, the results
obtained in this way correspond to a statistical—or, similarly, to a stochastic—average, and the
observables correspond to what one would obtain when repeating the measurement enough
times. However, looking at such types of averages blurs the information about the individual
realizations, which we may need to study, e.g., the temporal structure between photons with
different frequencies. As it should be useful to go beyond mean values and get access to time
series for a variety of purposes, one could turn to the Quantum Monte Carlo technique applied
to color-resolved photons. Ceperley and Alder (1986) developed a quantum version of the
classical method, and later on, Mglmer, Castin, and Dalibard (1993) modified it to simulate the
dynamics of a quantum object through the evolution of its wavefunction. In Chapter 2, I will
indeed upgrade and apply the quantum-jump Monte Carlo technique to the case of filtered
emission, that is to say, as applied to a stream of photons going through an interference (i.e.,
Lorentzian) filter. This can turn a simple system into a versatile, tunable quantum source, with
applications such as sources with variable statistics, as demonstrated by Dory et al. (2017),
or quantum spectroscopy in the schemes proposed by Mukamel and Dorfman (2015) and
Kazimierczuk et al. (2015), or by myself, as I will discuss in detail in Chapter 7.

(1.43)
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1.2.6 Resonance Fluorescence & the Mollow triplet

The concepts introduced above can be ideally illustrated with a particular case which is both
simple and important, namely, resonance fluorescence. From a practical point of view, resonance
fluorescence is the result of coherent excitation impinging onto a two-level system. Since the
early works of Wu, Grove, and Ezekiel (1975), Kimble and Mandel (1976), Agarwal (1976),
Kimble, Dagenais, and Mandel (1977), Apanasevich and Kilin (1977), Cohen-Tannoudji and
Reynaud (1977), Groove, Wu, and Ezekial (1977), Jakeman et al. (1977), and Arnoldus and
Nienhuis (1984), a large breadth of papers have been published studying various aspects of it.
In fact, the literature is so large, and the topic so fundamental, that it has long been textbook
material (cf. the book of Allen and Eberly (1987)). Using the master equation formalism
introduced in Section 1.2.1, the equation governing the dynamics of a coherently driven two-
level system—which energy levels can be noted as |g) and |e) for its ground and excited states,
respectively—with annihilation operator ¢ = |g) (e|, is:

. Y
9p =ilp. Hel+ 5 Lop, (1.44)
where y, is the rate at which the two-level system emits photons spontaneously. The Hamilto-
nian H in Eq. (1.44) is in the rotating frame, and is given by

H, = (0, - )5 6 +Q,(c" +0), (1.45)

where w, is the natural frequency of the two-level system, which is driven by laser of fre-
quency o and intensity Q. In the steady-state, when the left-hand side of Eq. (1.44) is equal
to zero, the observables of the two-level system become simple. For instance, its population is
given by

4Q2

ny=—— 1.46
o 24 AA2 4 802 (1.46)

where A, = 0, — o, is the detuning between the laser and the two-level system. Note that the
population of the two-level system has an upper bound, 1/2, which means that the coherent
excitation does not yield a population inversion in the two-level system. The upper limit is
only reached when the laser and the two-level system are in resonance, and the rate at which
the laser excites the two-level system is much larger than its decay rate: this induces Rabi
oscillations in the two-level system, which average out as a mean population of 1/2.

Other observables vary depending on the strength of the driving as compared to the emission
rate of the two-level system. When the driving is very weak, namely /., < 1, which is also

Reynaud Nienhuis

Figure 1.13: Some of the pioneers of the theory of frequency-resolved photon correlations, in particular
from resonance fluorescence. With their respective co-authors and over decades, they established the
correct theory providing increasingly accurate descriptions of the correlations in the light emitted from
the various peaks of the Mollow triplet.
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commonly referred to as the Heitler (1944) regime, the emission spectrum (given by Eq. (1.35)
replacing the operator a by ¢ and assuming w, = w; = 0) becomes

S, (@) = (1 - Ky)é(w) + Kzl ro/2

TG 2 (147)

where K, = 8Q2 /y2 and § is the Dirac delta function. The emission spectrum in Eq. (1.47) is
simply the superposition of a delta peak centered at the frequency of the laser—originating from
the photons that come from the laser and are elastically scattered by the two-level system—and a
Lorentzian peak of width y,—which stems from the luminescence (fluorescence) of the two-level
system. The coexistence of these two contributions is the basis for our theory of a sub-natural
linewidth single photon source, which I will discuss in detail in Chapter 3. Furthermore, the
second-order correlation function of the photons, as defined in Eq. (1.33), has a simple form

2
gl(f)(r) = (1 —e T /2) , (1.48)

which displays a perfect anticorrelation between photons emitted simultaneously.

The opposite regime, where the intensity of the laser is commensurable with the decay rate
of the two-level system, brings us into the so-called Mollow (1969) regime. There, the emission
spectrum is the celebrated Mollow triplet, shown in Fig. 1.14(a) and given by

2
17 1 Yo/2
S =———95 + -
=) ﬂr§+89i(w) 27 (v,/2)* + @?
1 37,/4 8QL—y2  y,40Q] -2 < ﬂ)
— +Z o+= ||+
4w By, /4* + (@ +f/4)? | 8Q2 +y2  f 8Q2 +y?2 4
1 37,/4 8Q) —y2  y,400Q] —y] p
T 42 Gy A 0 |sea T e \O73) | 049
7T By, /P + (0 —F/4) o o

where we have used the notation g% = 649% - yg. The spectrum is now composed of four terms:
the first one is still the contribution from the elastically scattered photons, which yields a Dirac
delta. The other three terms correspond to Lorentzians that form a triplet, which received the
name of Mollow (1969), who was the first to find its correct analytical expression. The central
peak of the triplet has a linewidth of y,, while the two lateral peaks have a linewidth of 3y, /2.
Moreover, the intensity of the central peak is twice the intensity of either lateral peak. This can
be easily understood in terms of the dressed-atom picture proposed by Cohen-Tannoudji and
Reynaud (1979), Reynaud (1983), and Dalibard and Reynaud (1983): In the limit Q, > y,, the
energy levels of the two-level system become dressed by the laser, thus forming an infinite ladder
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Figure 1.14: Properties of resonance fluorescence. (a) The emission spectrum of the two-level system in
the Mollow regime, highlighting the contribution from each term of Eq. (1.49) with a different color.
(b) Second-order correlation function of the emission from a two-level system in the Heitler regime (blue
line, obtained in the limit Q, — 0 and showing no oscillations) and from the Mollow triplet (orange line,
obtained for Q, = 2y,).
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of excitation manifolds. Each manifold consists of a pair of states |+), formed by a superposition
of the bare states |g,n+1) and |e, n), where “g” and “e” correspond to the “ground” and
“excited” states of the two-level system. Then, both transitions |[+) — |+) and |-) — |-) have
the same energy and constitute the emission from the central peak. Similarly, the lateral peaks

are the result from the transitions [+) — |-) and |-) — |+), respectively. This in shown in

Fig. 1.15(c).
The second-order correlations reflect the Rabi oscillations induced by the laser, and become
as follows: 3
g,(,z)('r) =1—e /4 [cos <%> + % sin <'B4—T>] . (1.50)

The photon correlation in the Heitler regime (1.48) is a particular case of Eq. (1.50), recovered
in the limit Q;, — 0. These two cases are shown in Fig. 1.14(b). Note that the expression in
Eq. (1.50) describes the correlations between photon pairs without specifying the frequency
at which these photons are emitted. The Mollow triplet is, however, a perfect example where
one would naturally inquire about the correlations between photons emitted from each of the
three peaks, as well as about the cross-correlations between photons emitted from different
peaks. In fact, measuring frequency-resolved correlations from quantum systems has been
pursued for almost three decades, starting with Apanasevich and Kilin (1977)’s theoretical
prediction and Aspect et al. (1980)’s observation that the photons coming from the peaks of
the Mollow triplet displayed strong correlations. However, despite the huge efforts of well
renowned theoreticians, in particular from Cohen-Tannoudji and Reynaud (1979), Reynaud
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Figure 1.15: Spectral lineshape and two-photon spectrum (2PS, density plots) of a two-level system,
showing the correlations between photon pairs with all the combination of frequencies. (a) The incoherently
driven two-level system emits photons with a Lorentzian profile, and the 2PS has a simple structure: pairs
of photons with the same frequency—located on the diagonal of the density plot—display higher values
(even bunching) due to their indistinguishability. (b) The Mollow triplet (spectral lineshape) has a richer
structure in its two-photon spectrum, that rises from all the different transitions between manifolds on the
ladder of dressed states (right). The one- (c) and two-photon (d) transitions in the ladder are indicated by
arrows of corresponding colors. Of particular interest, the two-photon “leapfrog processes” indicated by
the red, blue and yellow arrows give rise to strong bunching antidiagonals. In both cases the linewidth of
the filter is set to I = y,;.. The results in (a) are obtained with an incoherent driving rate P, =y, whereas
the results in (b) are obtained by driving the 2LS resonantly with the laser pumping rate Q; = 5y,. The
Rabi frequency, Q, (which in the case w, = @ is equal to 2Q,), gives the splitting in each manifold and
correspondingly, the position of the side peaks of the Mollow triplet. The energy of one laser-photon, wy,
is taken as a reference for the variables.
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(1983), Dalibard and Reynaud (1983), and Arnoldus and Nienhuis (1984), and culminating with
the work of Arnoldus and Nienhuis (1986), Nienhuis (1993), and Joosten and Nienhuis (2000)
who understood the problem in fairly comprehensive details, taking into account the filter’s
linewidth and effects of interferences and time-ordering, the description remained partial and
approximate, namely, it focused on the spectral peaks, which correspond to the real transitions—
in the sense of transitions that arise between the dressed states of the Mollow triplet. Here lies
the power of the theory developed by del Valle et al. (2012): since the frequency at which the
detectors collect the light is completely free, it gives access to the full underlying structure of
the quantum system, that is revealed when mapping correlations at all frequencies. We refer to
this structure as the two-photon spectrum (2PS). Already with the most fundamental quantum
object—a two-level system—del Valle (2013) and Gonzalez-Tudela et al. (2013) showed that the
emitted photons are strongly correlated when the frequency is taken into account, and Sanchez
Muiioz et al. (2014b) further demonstrated that such correlations violate Cauchy-Schwarz
inequalities. The 2PS of the two-level system driven incoherently is fairly simple, as shown in
Fig. 1.15(a): The autocorrelation of the photons emitted at the same frequency, which lie on the
principal diagonal of the figure, tend to be bunched (approaching g(rz) — 2 in the limit I - 0)
and the intensity of the bunching increases as the frequency gets farther away from the central
frequency of the emission. Gonzalez-Tudela et al. (2013) explained how this is the result of the
photon indistinguishability, rather than from any internal structure of the system, which means
that it is present in every 2PS. This is in agreement with Armstrong (1966)’s early description
of the effect of spectral filtering on coherent light, which was subsequently demonstrated
experimentally by Centeno Neelen et al. (1992). Outside of the diagonal, the cross-correlations
display the expected antibunching (due to the fermionic character of the two-level system),
passing through uncorrelated emission in the transition to the indistinguishability bunching.
Changing the excitation to a coherent source with enough strength to reach the Mollow (1969)
triplet regime, we observe a richer structure blossom, shown in Fig. 1.15(b): in this case, the
indistinguishability bunching is overcome by the strong correlations resulting from photon pairs
which emission is aided by a virtual transition that “jumps over” one manifold of excitation
(one pair of energy levels, labelled as |+)), as the ones shown in red, blue and yellow arrows on
Fig. 1.15(d). The photons emitted through these virtual processes satisfy the equation

D)+ Dy =24, for A={-1,0,1}, (1.51)

where @; = (w; — @), and they are highly correlated, as shown by the deep red lines on the
antidiagonals marked by the red (4 = —1), blue (4 = 0) and yellow (4 = 1) arrows in the
density plot of Fig. 1.15(b). In a process akin to purification, the price to pay for enhancing these
correlations is the reduction of the emission rate of the photons satisfying Eq. (1.51), with the
exception of the photons emitted in resonance to the two-level system. This places the Mollow
triplet—one of the most fundamental yet richest quantum systems—as a versatile source of
quantum light, able to provide photons with statistics ranging from perfectly sub-Poissonian
(that is, with gf,z) (0) = 0) to super-Poissonian (with gff)(O) > 2) passing by the statistics of a
coherent source (for which gt = 1 regardless of time). The following chapters are devoted to
using this versatility to excite other quantum systems.

1.3 SOURCES & TARGETS

This Thesis is about Exciting with Quantum Light. At such it requires to worry about the
Exciting source on the one hand and about the Excited target on the other hand. One natural
question is whether it is advantageous to excite objects with the emission of quantum sources
instead of classical ones. This problem is as important as it is fundamental, as it would require
to revisit every regime of excitation that has been considered with classical light—like the
incoherent light emitted by a thermal reservoir or the coherent light emitted by a laser—applied
to an even larger range of optical targets. Since using every possible quantum source and looking
at its effect on every possible system is impractical, we will focus on the most fundamental cases.
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Namely, for the source of quantum light, we will consider the emission of a two-level system,
itself being driven into the Mollow (1969) regime. The different types of correlations in the
various frequency windows introduced above and further discussed in Chapter 4, will make this
fundamental case largely sufficient on its own to investigate these questions at a fundamental
level. Even variations, introduced below, arise as particular cases or straightforward extensions.
For the targets of the quantum excitation, we will first consider the most simple yet fundamental
objects: a bosonic and a fermionic field, as well as the result of their strong coupling.

1.3.1  Single and Multi-photon sources

At this stage of technology, quantum light is foremost the one provided by single-photon sources.
In fact, their long coherence time and lightweight make photons very appealing to implement
logical quantum gates, which would then lead to the development of an universal quantum
computer. However, to get to that point, it is paramount to be able to generate and manipulate
arbitrary quantum states of light, and the first step is the generation of the one-photon Fock
state |1). Dynamically, this implies that we need a source of light with a long list of properties.
Among them, one would like that the probability that the source emits more than one photon
at any given time is zero (which implies a complete suppression of the second-order correlation
function, given in Eq. (1.33)), that any two photons emitted by the source are indistinguishable
(which can be measured in a Hong, Ou, and Mandel (1987) experiment), and that the emission
takes place in a periodic way. While computing these quantities is straightforward, one should
take into account the consideration about detection discussed previously: the properties of the
emitted photons only become real when they are observed, either by a detector or by another
quantum object. Thus, the correlation between photons, their indistinguishability and all other
properties related to the temporal structure of the emission, need to be considered in the light
of the Theory of frequency-filtered and time-resolved correlations of del Valle et al. (2012). In
Chapter 3, I will discuss in detail how indeed the photon correlations observed by an object
with a finite temporal or spectral resolution are affected.

The next step towards the realization of arbitrary states of light is the implementation of
sources able to generate Fock states of N photons. For instance one needs such an N-photon
source to test for quantum supremacy and performing experiments similar to the Boson
Sampling, proposed by Aaronson and Arkhipov (2011) and later measured with few photons
by Broome et al. (2013), Crespi et al. (2013), Spring et al. (2013), Tillmann et al. (2013), and Loredo
et al. (2017). In a laboratory, a source of N photons can be built from single-photon sources,
using techniques such as multiplexing: a stream of single photons—emitted, for instance,
by a nonlinear crystal through spontaneous parametric downconversion or by a two-level
system driven with pulsed laser—is made to enter an optical circuit to collect the individual
photons and keep them organized in time. Pittman, Jacobs, and Franson (2002) first introduced
this technique to generate a source of single photons on “pseudodemand”, and later Kaneda
et al. (2015) demonstrated that the technique could be used to obtain a source of heralded
single photons. Increasing the number of photons, however, also increases the complexity,

Figure 1.16: Artistic representation
of the N-photon emitter proposed
by Sanchez Mufioz et al. (2014a). The
light of a laser is sent onto a quantum
dot embedded in a microcavity. When
the frequency of the cavity is detuned
by the right amount from the quantum
dot, the emission of the system is given
by bundles of N photons (in this case
N =4).
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and generating a source of N photons becomes a tedious task. Conversely, one can turn to
more exotic sources that provide a large but fixed number of photons without requiring any
sophisticated optical engineering. Sdnchez Mufioz et al. (2014a) showed that the emission from
a two-level system driven in the Mollow triplet regime can provide such an N-photon source,
sketched in Fig. 1.16, at an elementary—and therefore robust—level. Keeping the dressed-atom
picture in mind, in which the energy levels of the driven two-level system are given by an
infinite ladder of excitations (cf. Fig. 1.15), and strongly coupling a cavity in resonance to the
N-photon transition, jumping over N — 1 intermediate manifolds of excitation, one finds that
the emission of the cavity indeed consists predominantly of bundles of N photons.

In chapter 4, I will build on the source of N-photon bundles and study the ways in which the
emission can be obtained in a more general way. Considering the correlations between single
photons at frequency @, and bundles of photons with frequency w,, and looking for the pair of
frequencies for which the zero-delay correlations are the strongest, will put the foundation for a
new class of heralded N-photon sources.

1.3.2 Bosons, Fermions and Polaritons

After discussing the sources of quantum light and how their properties vary when the observer
of light has a finite temporal and spectral resolution, we will move on to study the effects
on optical targets. In Chapter 5, I will focus on the bosonic targets, modelled as a harmonic
oscillator, and in Chapter 6, I will tackle the excitation of a fermionic target, modelled as a
two-level system. In Chapter 8, I will change the source of the quantum excitation from the
Mollow triplet to the source of N-photon bundles of Sanchez Mufioz et al. (2014a) and to a
two-level system operating in a regime of pulsed excitation. I will use the emission of these
two sources, and study their effect on both a bosonic and a fermionic field, thus becoming the
counterparts of Chapters 5 and 6. The bosonic and fermionic targets being so fundamental,
they need little more introduction. Maybe the next optical target to consider in terms of how
fundamental it is, after bosons and fermions, would be the so-called polaritons, which are a
quantum superposition of boson with i) fermions (Jaynes-Cummings physics) or ii) weakly
interacting bosons. The latter case will play an important part in this Thesis following my
collaboration with one of the leading experimental groups working with these objects, which
has pioneered some studies of exciting polaritons with quantum light following my (Lépez
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Figure 1.17: A typical polariton dispersion. (a) Luminescence spectrum in momentum space, as observed
experimentally, with the bright regions corresponding to zones where light is emitted. (b) Dispersion
relation as obtained from the Hamiltonian describing the polaritons. For the experimental image the Rabi
splitting was hg = 8.7 meV.
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Carrefio et al. (2015)) theoretical proposal in that direction. This will be discussed in depth in
Chapter 7.

The first experimental observation of polaritons was made by Weisbuch et al. (1992) with a
cavity containing seven quantum wells, displaying an anticrossing, commonly referred to as
Rabi splitting, by shifting the energy of the driving laser. In the observation, it was clear that the
energies at which the light was emitted from the microcavity were not those of the bare cavity
nor the bare excitons, but rather at two different frequencies, which are now referred to as the
lower and upper polariton branches. A typical dispersion relation from a polariton system is shown
in Fig. 1.17: panel (a) shows the real image as observed in the laboratory, with the bright regions
indicating the emission of light; panel (b) shows the breakdown of the energies that play a role
in the figure, with the bare modes (the energy of the photonic mode and of the excitons) in
dashed lines, and the polariton branches in solid lines. The energy difference between the upper
and lower polariton branches at normal incidence (k = 0), shown in panel (b) as g is given
by the strength of the Rabi coupling, i.e., the energy with which the photons and the excitons
are bounded. Theoretically, polaritons can be seen simply as coupled oscillators when exciting
a single mode or as coupled fields when involving a significant spread in momentum space.
They have enjoyed a considerable activity due to their strong interactions at high densities, in
which case they opened new directions in fundamental aspects of condensed-matter optics
including Bose-Einstein condensation, superfluidity and even superconductivity. For a more
detailed coverage, I refer to Kavokin et al. (2017)’s textbook on the topic. While the upper and
lower polariton branches have the same relevance in terms of energy, the upper branch suffers
much more from dephasing, which reduces the lifetime of the upper polaritons. This has been
studied in great details by Dominici et al. (2014), in a paper where I contributed a quantum
optical theory of polaritons using the formalism introduced previously. Therefore, most of the
experiments related to polaritons are performed using the light emitted from the lower polariton
branch. In Chapter 7, I will use the Mollow triplet and the versatility of the statistics from
the light emitted at various frequency regions of the triplet to propose an implementation of
quantum spectroscopy to tackle the most important question of this field (such as determining
the strength of the polariton-polariton interaction).

1.4 SUMMARY OF THE CONTENTS & PUBLISHED PAPERS

In summary, the rest of the Thesis is organized as follows:

¢ In chapter 2, I will discuss the results of Lopez Carrefio, del Valle, and Laussy (2018),
in which I put together the formalism of Cascaded systems, developed by Gardiner
(1993) and Carmichael (1993b), and the Theory of Frequency-Filtered and Time-Resolved
Correlations, developed by del Valle et al. (2012). Thus, I adapt the Quantum Monte
Carlo algorithm of Melmer, Castin, and Dalibard (1993) and Melmer and Castin (1996)
to include the effect of the detection on the statistics of the photons emitted by quantum
systems.

¢ In chapter 3, I will discuss the results of Lépez Carrefio et al. (2016a), Lépez Carrefio et al.
(2018), and Lopez Carrefio et al. (2019), in which I consider the sources of single photons
in the context of frequency-resolved correlations. Given that the photon antibunching
is spoiled when the process of observation is taken into account, I will consider several
criteria to rank sources of light, according to how well they maintain their single-photon
character after the emission is observed.

¢ In chapter 4, I will discuss the results of Lopez Carrefio, del Valle, and Laussy (2017),
in which I turn to sources of N photons following the steps of Sanchez Mufioz et al.
(2014a). Using the emission from resonance fluorescence when it is filtered at the adequate
frequencies, I will propose a mechanism that allows us to develop a source in which the
emission of a bundle of N photons is heralded by a single photon at another frequency.
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In chapters 5—7, I will use the light emitted from a two-level system driven itself in the so-
called Mollow (1969) regime, which Gonzélez-Tudela et al. (2013) have found to have a rich
structure in its temporal correlations. I will take advantage of this structure to broaden the
limits of the quantum states that can be reached by three types of systems:

¢ In chapter 5, I will discuss the results from Lépez Carrefio and Laussy (2016), where I
consider the excitation of a harmonic oscillator, which could be interpreted as photons,
polaritons or even plasmons. Studying the excitation of the harmonic oscillator, I will
chart the regions of the Hilbert space that are accessible only through the excitation with
Quantum Light. In particular, I will disprove the commonly-used criterion, g® < 1/2, to
identify single-photon sources, showing that there is a myriad of states of the harmonic
oscillator that satisfy such a criterion while having an average occupation larger than one.

¢ In chapter 6, I will discuss the results from Lopez Carrefio et al. (2016b), where I consider
the excitation of the other fundamental type of particles: Fermions. As an archetype of
it, I will study the excitation of a two-level system, which can be realized in a large
variety of physical systems, including cold atoms, ions, semiconductor quantum dots,
superconducting qubits, among others.

¢ In chapter 7, I will first discuss the results from Lépez Carrefio et al. (2015), where a system
of exciton-polaritons is probed by the Mollow triplet, and show as an implementation of
quantum spectroscopy how one can extract the polariton-polariton interaction strength.
Then, I will discuss the results from Cuevas et al. (2018), in which we used a pair of
entangled photons to excite a system of exciton-polaritons. These results were obtained
by the laboratory of Dr. Daniele Sanvitto at the CNR-NANOTEC institute in Lecce, and
provided the first hard evidence of the quantization of the polariton field, as well as the
observation of the effect of the the polariton-polariton interaction at the single-particle
level.

¢ In chapter 8, I change the source of Quantum Light, and instead of a two-level system,
I consider the emitter of N-photon bundles proposed by Sanchez Mufioz et al. (2014a).
Since the bundler is a complex device to simulate in the first place, I first address the
problem of how to efficiently simulate it, and develop to that effect various toy-models
that behave as expected from the original device, demonstrating very high purity of 3
and 4 photon emission. I describe the effect of driving both an harmonic oscillator and a
two-level system with N-photon light, finding in particular interesting variations from the
Mollow triplet. I show that two-photon correlations from a two-level system driven by a
three-photon exhibit interesting leapfrog-type structures, which similarity or originality
from those generated under classical excitations remain to be investigated.

¢ In chapter 9, I give an overview of the main results of this Thesis, draw some general
conclusions and provide some perspectives, with a succinct description of follow-up
works currently in progress.

These results gave rise to the following publications:

1. ULTRAFAST CONTROL AND RABI OSCILLATIONS OF POLARITONS
L. Dominici, D. Colas, J. P. Restrepo Cuartas, M. de Giorgi, D. Ballarini, G. Guirales,
J. C. Lépez Carreiio, A. Bramati, G. Gigli, E. del Valle, E. P. Laussy & D. Sanvitto,
Physical Review Letters 113, 226401 (2014)

2. EXcITING POLARITONS WITH QUANTUM LIGHT
J. C. Lépez Carreiio, C. Sdnchez Mufioz, D. Sanvitto, E. del Valle & F. P. Laussy
Physical Review Letters 115, 196402 (2015)
Selected as “Editor’s Suggestion”
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FREQUENCY-RESOLVED MONTE CARLO

Wiener wrote in his autobiography that he had ideas similar
to the ones I later proposed as the Monte Carlo method.

He says vaguely that he found no response when he talked
to someone and so dropped the matter.

— Stanistaw Ulam
Adventures of a Mathematician

2.1 CLASSICAL MONTE CARLO

Ulam (1991) wrote in his autobiography on the genesis of the technique at the core of this
chapter:

The idea for what was later called the Monte Carlo method occurred to me when
I was playing solitaire during my illness. I noticed that it may be much more
practical to get an idea of the probability of the successful outcome of a solitaire
game (like Canfield or some other where the skill of the player is not important) by
laying down the cards, or experimenting with the process and merely noticing what
proportion comes out successfully, rather than to try to compute all the combinatorial
possibilities which are an exponentially increasing number so great that, except in
very elementary cases, there is no way to estimate it. This is intellectually surprising,
and if not exactly humiliating, it gives one a feeling of modesty about the limits
of rational or traditional thinking. In a sufficiently complicated problem, actual
sampling is better than an examination of all the chains of possibilities.

Since then, the Monte Carlo method has been used in a large variety of topics to tackle diverse
problems. For instance, Rogers (2006) has reviewed the role that the method has had in the
research on medical physics, such as the impact that radiation has on tissues. The academic
efforts in this topic led to the development of the software GEANTY, that allows the simulation
of the passage of particles through matter and which is routinely used at CERN to test the
performance of gamma- and X-ray detectors. Badano and Kanicki (2001) and Mesta et al. (2013)
have used the Monte Carlo method to analyze the structure of organic materials to make them
work as light-emitting diodes. Furthermore, Glasserman (1994) has laid the prospects that the
Monte Carlo method has in finance, such as the analysis and prediction of financial time series,
which is particularly relevant for the stock markets. While the list of applications could go
on for pages, I now focus to the Quantum Monte Carlo methods, which I will show have the
potential to describe a large breadth of quantum optical problems.

2.2 QUANTUM MONTE CARLO

If there is a field of Science that involves "exponentially growing numbers" that can only be
accessed through "sampling”, this is indeed quantum physics. The computational complexity,
also combinatorial in nature (everything can happen), is at the core of the theory. Furthermore,
sampling is inescapable in the real world, where one can only perform a finite amount of
measurements (or observations) that will turn the deterministic but abstract wavefunction
into a probability distribution function, of which the end user only gets one result at a time.
Theorists have the luxury to access perfect averages, but these are derived quantities, which can
be misleading (the average position of the first excited state of a particle bound in a symmetric
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Figure 2.1: The way in which an atomic system emits its photons can be modified by the presence of a
metastable energy level. In the panels, the emission of a photon is indicated by a vertical line. The two
panels show the emission in absence (a) and in presence (b) of a metastable state. In the latter case, one can
clearly identify the temporal regions where the emission of light (and lack of it) alternate. This is captured
by a Monte Carlo simulation in a way that is not straightforward from standard quantum mechanical
averages. This figure is an adaptation from Zoller, Marte, and Walls (1987).

potential is at a point where it is never to be found). In fact, it can be enlightening for theorists
to get closer to the experimental reality by striving to access single realizations as well, out
of which to compute derived quantities, such as observables. For example, Bouwmeester and
Nienhuis (1996) discussed how the experimental observation of single quantum trajectories
could provide evidence for or against Jaynes (1973) neoclassical theory and yield other unique
insights into fundamental aspects of quantum mechanics.

Ceperley and Alder (1986) showed that the Quantum Monte Carlo technique has ramifications
in several fields related to quantum physics. In the context of interest in this Thesis, that of
quantum optics, several methods have been developed in the early gos (Plenio and Knight (1998)
have written a detailed review). Of these, the quantum jump approach, developed in the late
8os by Zoller, Marte, and Walls (1987) and Carmichael et al. (1989) and simplified further in the
mid gos by Dalibard, Castin, and Melmer (1992) and Melmer and Castin (1996), is particularly
appealing as it links the wavefunction collapse to the emission of a photon. Assuming an ideal
detector that covers the full 4z solid angle surrounding the emitter, this allows to perform a
computer experiment of photo-detections. The need for such sampling techniques was indeed
chiefly motivated by going beyond averages, namely, in the so-called intermittency problem
(that describes the switching on and off of the emission of a lambda system driven coherently),
where the system remains for long periods of time in unstable regions, which are concealed by
the averaging, as shown in Fig. 2.1. From such “clicks” (as we will call a detected photon), one
can for instance compute the Glauber correlation functions g, introduced in Eq. (1.32), but
one can also compute less easily accessible quantities such as exclusive probability densities,
e.g., detecting the next photon at a time ¢ after one detection, with no other photon in between
(g™ assumes any photon rather than the next one), or distributions of time delays between
nearest neighbours, probabilities to detect any given number or even configuration of photons
in a time window, or any other type of binning “experiment”.

2.2.1 Formalism

We will focus on the Quantum Monte Carlo algorithm, outlined by Melmer, Castin, and
Dalibard (1993), to simulate the dynamics of an open quantum system. This method allows
to observe individual quantum trajectories that the system undergoes, and which are washed
out by the master equation, as the latter gives the stochastic average of many such individual
trajectories. Furthermore, this technique provides the evolution of a wavefunction—rather than
a density matrix, as required by a description through the master equation (1.20)—which is
particularly useful, and computationally preferable, when the Hilbert space of the quantum
system is very large.

Given that the quantum system is governed by the interplay between a Hamiltonian H
and dissipative processes—which are associated to jump operators L, defined in Egs. (1.20-
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1.21)—the implementation of the method demands to define a non-Hermitian Hamiltonian as
_ i N
H=H—52LkLk, (2.1)
k

which rules the deterministic dynamics of the wavefunction. Then, the task is to obtain the state
of the system at a time ¢ + 67, given that we know the state of the system at a previous time 7.
The probability that during the interval of time between ¢ and t + 6¢ the system undergoes a
quantum jump, induced by the operator L, is given by

pi =6t (WO L Ly ly (@) . (2.2)

where |yp(7)) is the state of the system at time ¢. Afterwards, we draw as many random
numbers r;, (between zero and one) as there are quantum jump operators, and compare them
with the probabilities p;, computed in Eq. (2.2). If we find that r; < p, for some k, the system
makes a quantum jump and the state of the system becomes

Ly lw(®)
(WO L Ly [w(®)

lw(t+61)) = (2.3)

In case there are more than one k for which r, — p;, < 0, we have to design a strategy to select
the operator that makes the jump. For instance, one can select the operator for which the
difference p, —ry is the largest. If, on the other hand, we find that r, > p, for all k, there is no
quantum jump and the state of the system evolves as

exp(—iH81) |y (1))
(w(0)| exp(i H'5t) exp(—i H 8t) [y (1))

The choice of the time step 6t for the simulations needs to be taken in such a way that: i)
the probabilities in Eq. (2.2) are always well below one, and ii) the physical observables are
converged (which can be verified using other numerical methods, or simply decreasing 6t). In
fact, Melmer, Castin, and Dalibard (1993) showed that the method outlined above is completely
equivalent to solving the master equation, given that we take averages over many realizations
and in the limit in which the time step is sufficiently small, i.e., in the limit 6 — 0.

lw(t+61) = (2.4)

2.2.2  Incoherently driven two-level system

We will first illustrate the technique on a two-level system, with annihilation operator ¢, which
is the simplest system in quantum physics and one of great relevance in this Thesis. Starting
with the free Hamiltonian

H, =wy'o, (2.5)

for a two-level system with free energy w,, and Liouvillian

. Ys P
0,p:1[p,H6]+?£ap+ TE"”)’ (2.6)
describing the incoherent driving at a rate P, and an inverse lifetime of the two-level system y,,
one finds from standard quantum optical techniques that the steady state emission rate and
second-order correlation function are simple quantities, namely

P Y6 P,

n_= g, I=yn =—2°9 and @(z) =1 —exp[-(y. + P.)r], 2.
iy Tole = 1P, §7(1) pl-(r; + P,)7] (2.7)

which predicts, in particular, that the two-level system displays perfect antibunching at zero
delay, namely g®(0) = 0. A Monte Carlo simulation, using the technique explained in Sec-
tion 2.2.1, is shown in Fig. 2.2. The upper panel shows the fluctuations in the detection times
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Figure 2.2: Monte Carlo method on a two-level system. (a) Times of emission for 1000000 recorded
photons as compared to their mean emission rate, exhibiting a classical random walk. (b) Zoom of (a) in
the highlighted window. (c) Zoom of (b) in the highlighted window, with detected photons now displayed
in absolute time rather than relatively to their mean emission time. Locally, one can observe a structure in
their statistical distribution, with a tendency of ordering and mutual repulsion. This becomes obvious
when comparing with uncorrelated photons with the same emission rate, shown in (d). The latter exhibit
Poisson bursts. (e) Intensity correlations £@(z) computed from the one million points, in two timescales,
featuring a clear antibunching. The inverse lifetime of the two-level system sets the time unit.

of a million photons from such a source. As such, this realizes a random walk, similar to a
random (Poissonian) process, and at large timescales there is nothing noticeable. On the short
timescale, however, one can observe clear correlations of antibunching, as shown in the series
of clicks indicated by blue ticks in Fig. 2.2(c). Namely, photons tend to repel each other and
appear more orderly than if they would be uncorrelated, as is the case of the second series
of photon detections, shown for comparison with black ticks in Fig. 2.2(d). The uncorrelated
series exhibits the counter-intuitive “Poisson clumping” or “Poisson burst” effect, which was
made famous by von Bortkiewicz’s horse kicking casualties in the Prussian army and still of
recurrent appearance in the media as intuition repels the notion that a burst of accidents in,
say, a hospital, is a natural random process rather than negligence. The strongly-correlated
character of the two-level system emission becomes clear and compelling when computing
intensity correlations g (r) from the clicks, defined as the density of probability of finding
two photons with a time difference 7. Specifically, from the times of detection ¢;, we compute
ti—t; forall 1 <i < N with N the total number of detected photons (here N = 10%) and
compare the density of time differences to that from uncorrelated clicks with the same intensity.
Note that in a typical experiment, a first photon starts a timer and a second stops it, and a
distribution of the time difference between successive photons is used as a good approximation.
In our case, we compute the exact correlations by collecting all the time differences within the
correlation window of interest. This is shown for |z| < 50/y, in Fig. 2.2(e), left. One sees an
overall plateau, indicating that photons have the same distribution for long-time separations as
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if they were emitted by a Poisson process (randomly). But one also observes a clear dip at 7 ~ 0,
indicating that at such close distances, photons behave very differently than uncorrelated ones,
namely, the occurrence of small time delays is strongly suppressed. This is better resolved in
Fig. 2.2(e), right. Such a behaviour defines antibunching, g®(0) < g'®(z), with coincidences, i.e.,
simultaneous detection of two photons, less likely to occur than other closely spaced detections,
with perfect suppression of coincidences when g®(0) = 0. Since these correlations wash out at
long times, one has lim,_, ., g?(z) = 1. The time it takes to reach this plateau is the second-order
coherence time. We do not need to overlap these results of the Monte Carlo signal with the
theory curve, Eq. (2.7), since, with one million points, it is exact to within the plot accuracy.
Beside the statistical noise, that starts to be apparent for = > 1/(2y,), the Monte Carlo data
provides a smooth curve in the window of strong correlations. In our simulation, the Ar was
0.01/y, and the binning size was taken twice as large, corresponding to the two closely-spaced
vertical lines on the right panel of Fig. 2.2(e), bounding g®(0) from below due to this small
uncertainty. With a binning size equal to the Monte Carlo timestep, one recovers the perfect
antibunching at the origin, although on two grid points, so also producing a small error (the
result would be perfect only in the limit of vanishing timesteps).

2.3 IMPACT OF FREQUENCY-FILTERING

These results provide the background for our approach with the filtered signal. We now turn to
the question of what happens to the emitted photons if a filter is interposed on their way to
the detector? This does not simply subtract a fraction, it also redistributes those that make it
through, to provide them with possibly very different statistical properties, as we now discuss
in more details.

While the quantum Monte Carlo method has been amply used to compute the power
spectrum as well as time-series of photon emission (see the works of Dum et al. (1992), Marte
et al. (1993), Melmer, Castin, and Dalibard (1993), Garraway, Kim, and Knight (1995), Hegerfeldt
and Plenio (1996), Plenio (1996), and Schack, Brun, and Percival (1996)), its combined use for
both time and energy-resolved photons has, to the best of my knowledge, not been provided
before in both a practical and exact form. The first attempt in this direction was made by
Tian and Carmichael (1992), who considered the behaviour of an optical cavity containing one
atom. The cavity energy is resonant to a transition of the atom, so that the description of the
dynamics can be done through the Jaynes-Cummings model. Although the cavity could be
thought as a filter for the emission of the atom, the coupling between the two objects is not
weak enough and one can see the presence of the cavity in the observables of the atom, e.g., the
emission spectrum, where lateral peaks (albeit weak) appear on both sides of the Mollow triplet.
Also in the early gos, Carmichael (1993a) considered the Monte Carlo approach within the
context of the cascaded formalism, but without connecting it to frequency-resolved correlations.
Recently, Sanchez Mufiioz et al. (2014b) implemented a Monte Carlo simulation that attempted
to take into account the effect that frequency-filtering has on the temporal structure of the
photons emitted by the Mollow (1969) triplet. Not only were they interested in the emission
from the peaks of the triplet, but also from the frequencies in between, at which Sdnchez Mufioz
et al. (2014a) predicted an emission of photon pairs. Indeed, the discovery of leapfrog emission
in general and how these could be further exploited to yield a new type of quantum light,
called for further investigations at the Monte Carlo level. In particular, even without frequency
filtering, Monte Carlo simulations were central in Sdnchez Mufioz et al. (2014a)’s analysis of
the purity. In Sdnchez Mufioz et al. (2018)’s analysis of bundling with frequency filtering, the
lack of an exact Monte Carlo technique prevented them to bring the bundle emission at the
same level of scrutiny as in their previous work. I will discuss next the limitations of their
approach and, more generally, how to implement an exact and efficient Monte Carlo simulation
with frequency-resolution. The technique consists in adapting the Monte Carlo technique to the
cascaded formalism. The proof of validity is obtained by showing that the clicks thus generated
reproduce the correlations predicted by del Valle et al. (2012)’s theory of frequency-resolved
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photon correlations. We will apply this technique to the driven two-level system, under both
coherent and incoherent emission, at low and large pumping. We will consider both the cases
of autocorrelations and cross-correlations. Of course, the same principles could be extended to
more than two detectors.

2.3.1 Formalism

Sénchez Mufioz et al. (2014b)’s attempt at generating a frequency-resolved Monte Carlo was
insightful and provided an excellent first look at this problem. It consisted in placing the
cavity at resonance with the sought-after frequency (in particular, at the two-photon transitions)
and observing the correlations. However, since the signal at such a frequency is scarce, the
simulation was done with the cavity in weak coupling, rather than the vanishing coupling
required by the theory. In both cases, involving a cavity sets a problem of optimization: either
the coupling is taken to the vanishing limit at the price of reducing the signal available, or the
coupling is left weak at the price of obtaining approximate correlations.

In contrast, my approach allows to extract streams of photons from any frequency windows
of a quantum source, using all the signal theoretically available and taking into account self-
consistently the effect of its filtering, with an exact treatment of its effect on the correlations. This
allows to revisit photon-counting experiments with the added energy degree of freedom, that
are already challenging without the frequency constrains. The equivalence between spectrally-
filtered photo-detection theory and the sensor method was demonstrated by del Valle et al.
(2012). Here, I will likewise demonstrate the equivalence between the sensor method and the
cascaded formalism, which will also prove, therefore, the equivalence between spectrally-filtered
photo-detection theory and the cascaded formalism.

On the one hand, the sensor method “plugs” sensors to the dynamics. Formally, calling ¢ the
annihilation operator of a source and ¢ that of a sensor probing it, we can describe their joint
dynamics by a Liouvillian equation

Yo

r

o,p=ilp,H, + a)ééTé +ec’E+ e ol +
where H, is the Hamiltonian that describes the internal dynamics of the source, y,, is the decay
rate of the source, I' is the decay rate of the sensor and £,p = 2cpc’ — ¢Tep — pe'e. To describe
the dynamics of an arbitrary operatoré™#£'c 6" under the action of this Liouvillian, we use
the notation of del Valle et al. (2012), in which the correlators for the uth and vth powers of the
sensor operators &, & and all powers of the 67, ¢ operators are placed within a vector:

Wi, vl = (ETHEY) (EMHEa), (ETHEYGTY, - (ETHE 6™, )T . (2.9)

Then, the master equation (2.8) becomes an equation involving vectors of correlators, as follows

0,0[u,v] = {M + (1 = v)iwg — (u + v)g]l}i)[u, vl+ieuT, wlpu—1,v]l—ie*VvI_w[p,v— 1]+ 0(e?),

(2.10)
where 1 is the unit matrix, T, are normal-ordering superoperators for the ¢ operators, and the
O(€?) notation means that all other terms are of higher order in e. The matrix M provides the

dynamics for the source

0,i0[0,0] = Mw[0,0] + O(e?), (2.11)
and is independent of the sensor at the lowest order in ¢. At this stage, we do not assume
any property of ¢ or &, which could be bosonic (in which case y, v, m and n are unbounded)

or fermionic (in which case y, v, m and n are either o or 1). Equation (2.10) can be formally
integrated, yielding

Wl v = ile] {M + (4 = VYioos — (4 + v)g]l}_ (=€ T, Blu — 1,v] + e VT B, v — 11) + O(e2),
(2.12)
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where € = |¢|e?. This in turn can be solved recursively, down to [0, 0] where the equation
self-truncates. Each element [y, v] is found to be, by inspection of Eq. (2.12), of the order |e|#*Y,
to the smallest order in |¢| (leading when |e] — 0). Note that only the absolute value of the
coupling can be extracted as a common factor in Eq. (2.12). This results in (x + 1)(v+ 1) — I nested
equations and unknowns in order to compute a given element w[yu, v]. While these equations
can be solved recursively to obtain analytical expressions, we note that the normalised n-th
order correlators, g(F”), are ratios of the first component of [n; n] (that is, (£Tnemy) divided by the
n-th power of the first component of w[1; 1] (that is, (£7E)), itself of order |e|?, so that in such a
ratio € is cancelled to leading order. Although higher-order terms would spoil this cancellation,
they become negligible as the sensor coupling is made smaller. Therefore, in the limit |¢] — 0,
the result becomes exact.

On the other hand, the cascaded formalism, which aims at exciting a target without affecting
the source, provides a similar type of cancellation, although not restricted to vanishing coupling.
From a causality point of view, it is clear that such a source/detector scenario where only one
affects the other can be realized. The source that emitted a photon towards a detector may
not even exist anymore by the time the detector is excited. This is achieved formally through
interferences that cancel the back-action from the detector to the source. The master equation
describing this asymmetric coupling reads

r

5 Lep+ Var,Tllop, &1+ po'1) (2.13)

. 7,
o0 =ilp. Hy + w71 + §£6p+

The last three-terms of Eq. (2.13) can be re-written in the Lindblad form as

Yo r
TLop+ 5 Lep+Var,Tllop £ +1£ po'l} =

1 X7, nl Vay,I' +

§£§p+ 126£0p+ %£§p+ 5 (p.T0c —6'¢], (2.14)

where 6 = /(1 — x1)7, 0 + /(1 = xp)I £ is the joint decay operator of the whole system, source
and detector, and the interpretation of the factor y, becomes that of factors that quantify the

amount of signal that each part, source and detector, generates on its own and that the joined
system generates as a whole. The detector, which must have a finite lifetime to couple to
the source, thus also has an intrinsic frequency window with effect of filtering the emission
it detects, whence the connection to the sensors formalism. The factor ¢ = (1 — y)(1 — x5),
for 0 < y;, 1, < 1, takes into account that the source can have several decay channels. This is
required for instance when only fluorescence is wanted without contamination from another
source, e.g., a laser exciting it (experimentally this is typically achieved by detecting at right
angle from the exciting beam).

The proof proceeds by showing that é"#&V6™6" has the same equation as in the sensor for-
malism, by computing explicitly the equation for d,t[u, v] in the cascaded formalism, Eq. (2.14).
This reads, to all orders in the coupling in this case:

0,i0[u, vl = {M + [(u — V)iwg — (u + v)g]l}u?[y, vl — Vay, D{uT, olp — 1, v] +vT_wlu,v—11} .

(2.15)
Remarkably, this equation has the same form as Eq. (2.10) with € — iy/ay,I'. Even though &
is complex and a vanishing quantity in Eq. (2.10), with higher order corrections, and v/ay,I’
is real and finite in Eq. (2.15), both methods provide exactly the same normalised correlators,
as these coupling parameters enter in both the numerators and denominators with the same
power and cancel out. The result becomes exact for vanishing coupling in the case of sensors
and is exact in all cases with the cascaded formalism, regardless of their normalisation. Note
as well that 8, the phase of the coupling ¢, has an effect on the dynamics only if the Lindblad
equation features products of different operators in its dissipative terms, which is the case
for the cascaded formalism with £; that brings cross terms of ¢ and &. The sensor formalism,
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however, has no such joint decay emission and the phase of £ does not play any role, so that
€ could have been set real. This achieves to prove the mathematical equivalence of the sensor
method with the cascaded formalism for the computation of normalized correlators.

Since del Valle et al. (2012)’s sensor formalism has been shown to be equivalent to normalized
photon correlations according to photo-detection theory, as discussed for instance by Vogel
and Welsch (2006), the above equivalence of the sensor and cascaded formalisms shows that
following the recipe from Carmichael (2008) and applying the quantum Monte Carlo method
to the detector realizes a sampling of the emission in the corresponding frequency windows,
from which one can reconstruct the frequency-resolved photon correlations. That is to say, this
allows us to simulate the photon emission with both time and energy information, which is
what we are going to illustrate in the following.

Note that with both Egs. (2.10) and (2.15), any given correlator (¢7#£") can be computed
exactly (by recurrence) in terms of lower order ones (é“"é”) only, with 4/ < pand V' < v.
This means that both methods can be applied using N two-level systems as detectors at
different frequencies, in order to compute cross correlations, or with a single harmonic oscillator
truncated at N excitations, to compute the Nth order monochromatic autocorrelation function
g™, This is however not sufficient with the cascaded formalism for computing the density
matrix (full state) of the detectors or for doing Monte Carlo simulations of the emission. In such
cases, one must model the N detectors as harmonic oscillators with a high enough truncation to
provide converged results. Such a simulation is conveniently implemented through the quantum-
jump approach. The dynamics of the system is thus described by a wavefunction |y(?)) that
occasionally undergoes a process of “collapsing”, attributed to the emission of a photon, that one
records in the simulation as a detector would register a click in an experiment. The occurrence
of a collapse is decided in each infinitesimal time interval 6t — 0, where the evolution of the
wavefunction is governed by two elements: a non-Hermitian Hamiltonian and random quantum
jumps, just like in the method described in Sec. 2.2.1. For the system described by the master
equation (2.13), the collapse operators are (cf. Fig. 2.3)

Li=+v(U-r,0+V(1-pTé, L= Vxiveo and Ly=+/pnl'¢E, (2.16)

whereas the non-Hermitian Hamiltonian is given by

Driving Vacuum
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Figure 2.3: Scheme of the setup to measure the frequency-resolved correlations of the light emitted by a
source, whose energy is centered at w, and has a decay rate y,. While a fraction of the emitted light goes
unfiltered to the open space, to which we refer to as the “unfiltered emission” and which is described
by the quantum jumps of the operator L, in Eq. (2.16), the remaining fraction is used to weakly drive
the sensor, which has frequency o, and decay rate I', which is also the bandwidth of the sensor. The
emission from the sensor can also be separated into two streams, depending on whether the emission
from the sensor is mixed or not with scattered light from the source (e.g., the emission of the sensor and
the scattered light might follow different spatial paths). The case without the scattered light corresponds
to the “filtered emission” which can then go to a detector D or a Hanbury Brown setup. It is associated to
the operator L; of Eq. (2.16), while the mixture of light is described through the operator L; of Eq. (2.16).
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Figure 2.4: Frequency-resolved emission from an incoherently driven two-level system. The number of
events (clicks) recorded are close to 10000 (namely 9976, 9916, 9974, 9927, 9967, 9955, 9860) for the cases i—
vii respectively, and 25 0oo for case viii to get enough signal for the small timescale comparison to the other
filters. (a) The density-plot of the theoretical gl(ﬂz)(r) with the color code indicated (blue for antibunching,
red for bunching and white for uncorrelated). Filtering leads to thermalization. The transition is slightly
more complex than merely loss of antibunching. The dotted line shows the isoline gl(,z)(r) = 1. Monte Carlo
simulations have been done for the eight cuts shown. Panel (b) shows samples of clicks in the same time
window (black, left) or with rescaling to have the same intensity (green, right). There is a neat transition
visible to the naked eye between the two types of photon statistics. Autocorrelation computed from the
clicks are shown in the eight panels at the bottom, together with the theory prediction. In panel v, the
theory curve is also shown displayed to reveal its fine structure departing from gl(,z)(r) = 1. In panel viii,
also the case of longer times is shown since thermalization goes together with slowing down of the
dynamics. For the density plot 1/y, sets the unit and P, = 2y,. The clicks correspond to the emission
events of the operator L; in Eq. (2.16).

-~ i i +
H=H,+H,;- E\/aygl“(éTO' —ole) - E(LIL1 +LIL, + LILy),
. i
= H6+H§—z\/ay6F§TU— 5(}/66T6+F§T§). (2.17)

In the following sections, we apply the frequency-resolved Monte Carlo method to the emission
of a two-level system under various regimes of excitation.
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2.3.2 Incoherently driven two-level system

We now apply the frequency-resolved Monte Carlo method introduced above to the incoherently
excited two-level system, which we have already investigated through the standard Quantum
Monte Carlo method. The effect of a Lorentzian filter on the statistics of emission of an
incoherently excited two-level system has been discussed by del Valle et al. (2018) as is shown
in Fig. 2.4(b). The theory predicts thermalization and loss of antibunching with narrowing
filtering. The theoretical expression for the delay correlation is given by

2 r,(r2-3IT, - 2172 2r,I(5r —T
g?)(r): 1 _< r > o Tot T ) Tz oL ( 5) e~ TotDE/2 (5 18)

r-T, (T, TP, +30) . (T, —TRAT,+30)

where I'; = y, + P, and the detector is resonant to the 2LS. With the frequency resolved
Monte Carlo, one can simulate streams of clicks corresponding to spectral filtering, as is shown
Fig. 2.4(b) with eight Monte-Carlo simulations of roughly 10000 clicks each (25000 for the
narrowest filter in case viii). Extracts of the recorded clicks are shown, comparing them, 1)
in the same time window (black ticks), with effect of having much less clicks for narrower
filters, and also 2) when rescaling the unit of time so that the intensities are the same (green
ticks). In the latter case, one can compare the statistical distributions, and observe the transition
from antibunched clicks (i) to thermal ones (viii) passing by auxiliary distributions. In the
former case, one observes the characteristic antibunching, equally-spaced like distribution of
a two-level emitter. In the latter case, one finds the wildly fluctuating thermal (or chaotic)
light, with pronounced bunching in the form of long gaps of no emission followed by gusts
of emission. This can be differentiated even with the naked eye from the Poisson distribution,
whose tendency for “clumping” does not get as dramatic as the thermal case. One can follow
the transition neatly from these various sets of clicks, passing by the case of almost uncorrelated
light. Since the isoline g(rz) () = 1 is not straight (it is shown as a dotted line in the density
plot of Fig. 2.4), the passage from antibunching to bunching does not transit through exactly
uncorrelated (or coherent light), although the deviation is too small to be appreciated on a small
sample. To observe such fine variations, one needs to acquire a large statistical ensemble and
condense the correlations in a single object, such as g(rz), as is shown in the eight panels at the
bottom of Fig. 2.4. The case v of close-to-uncorrelated light is also shown separately from the
Monte Carlo data to reveal its fine structure. The other cases have a simpler shape of a dip that
turns into a hump. The correlation time also changes dramatically, as is observable both from
the density plot and the Monte Carlo histograms. As the emission thermalizes, its fluctuations
occur on longer timescales. This is the reason for the increased noise in panels vi-viii. There,
one should increase the binning and consider larger time windows, as shown in green for
case viii that assumes a binning of Aty, = 1 instead of 0.1 for the other cases, and plot the
correlations in a time window |ty;| < 100 instead of 10, as indicated on the respective axes,
recovering the excellent agreement with theory displayed by the antibunched cases.

Now in possession of the statistical data, and with the insurance of its accuracy given its
agreement with the theory, it is possible to undertake various types of analysis that would not
be so straightforward without these simulations, as has been discussed above. I will not go in
this direction now and leave for future works the case of an incoherently excited 2LS. Instead,
we now turn to the case of coherent excitation, that presents more features of interest.

2.3.3 Coherently driven two-level system

The case of coherent excitation is obtained by complementing the Hamiltonian in Eq. (2.5) with
the driving of the two-level system, Q,(¢" + ¢), and using the master equation (1.44). The case
of a filtered coherently driven 2LS is shown in Fig. 2.5. Here as well, there is thermalization and
although it only happens when the intensity of the driving laser is larger than the decay rate
of the 2LS, i.e,, when Q_ > y,, it is interesting to consider the effect of filtering and approach
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Figure 2.5: Frequency and time-resolved gg) (7) of a two-level system coherently driven, in its transition
from the Heitler to the Mollow regime (from left to right). At low pumping, one does not observe
thermalization (bunching) with narrowing filters. Higher pumping brings both bunching, similar to the
case of incoherent pumping, and oscillations. The bunching is observed only for moderately narrow
filtering as extremely narrow filtering goes back to filtering exclusively the Rayleigh peak, with a resurgence
of the Heitler effect and uncorrelated (or coherent) emission. Wide filtering overlapping the three peaks
captures the Rabi oscillations. A Monte Carlo simulation of the case highlighted with the dashed line is
shown through a small sample of clicks (bottom) and the autocorrelation function, compared to the theory
prediction. There is a clear structure in the photon clicks, that is unlike any of the cases shown previously.
The clicks correspond to the emission events of the operator L3 in Eq. (2.16).

it from the Monte Carlo perspective. Taking one slice featuring these oscillations, we collect
103 clicks, a small portion of which is shown as ticks at the bottom of Fig. 2.5. Computing
the autocorrelations, we find indeed strong oscillations from a very good antibunching with
steep bunching elbows, in agreement with the theory. This produces even more pronounced
correlations in the photon-detection events, where the spacing appears more regular and
between clumps of photons. As far as continuous streams are concerned, this suggests that
such strongly-oscillating g» do in fact provide more ordered time series than the conventional
antibunching of the type of Eq. (2.7). Such questions will be tackled in the next Chapter. We
conclude this Section with further comments on the Heitler effect (coherence of the Rayleigh
peak), which takes place in the regime of low excitation. While one could try to recover it in
the high excitation regime using a narrow filter, one needs to consider several fundamental
aspects. First, regarding the emergence of a thermalization similar to that of incoherent driving,
cf. Fig. 2.4, this is obtained when one enters the Mollow (1969) triplet regime. In this case,
luminescence has split into a triplet lineshape and, when filtering at resonance (as is the case
here), one filters the central peak alone, which according to Reynaud (1983) corresponds to
the spontaneous emission of a photon that leaves the state of the dressed two-level system
unchanged. As such, the spontaneously emitted photons react to filtering in a similar way
than the incoherently pumped two-level system, hence the observed bunching for narrowing
filters linewidths. The similarity is only partial, however, as Gonzalez-Tudela et al. (2013)
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showed that in the limit of infinite pumping, instead of thermalization with g(rz)(O) = 2, the

2
r

find maxp gl(_z)(O) ~ 2.2). More strikingly, when filtering well within the central peak, one then
isolates the Rayleigh (6) peak again and reverts to the low-pumping case, with the statistics
becoming uncorrelated, as shown in Fig. 2.5. Large filtering windows, on the other hand, collect
the emission from all three peaks and reproduce the Rabi oscillations, which is the case selected
for the Monte Carlo sampling. We explore in more details the opportunities offered by the
Mollow triplet in the next Section.

transition is to a super-chaotic state, with g-”(0) = 3 (for the parameters considered here, we

2.3.4 Mollow Triplet

2.3.4.1 Autocorrelations

While the influence of spectral filtering on the quantum nature of light emitted by the Mollow
triplet was well understood, for instance by Joosten and Nienhuis (2000), it is not until del
Valle et al. (2012)’s theory of frequency-resolved photon correlations that the full extent of
the interplay between filtering and quantum correlation was appreciated (cf. Sec. 1.2.6). This
is particularly obvious in the 2PS (Fig. 1.15) where such correlations are revealed as two-
photon transition (leapfrogging) straight-lines in the 2D landscape. Such strong correlations are
apparent even in autocorrelations, meaning that a single detector positioned at the appropriate
frequency (halfway between the peaks in the Mollow triplet) would register highly correlated
clicks. We illustrate this in Fig. 2.6 with the statistics of clicks from photo-detection events of
the Mollow triplet in frequency windows spanning from the central peak to the side peaks,
including various other windows in between, in particular, the leapfrog window. Note that,
here as well, the data is for a single-detector observable, that is to say, the different streams
shown are not correlated to each other as they have been obtained by the same detector in
different runs of the experiment. It would require 5 detectors to obtain the same result but with
correct cross-correlations (this is beyond the scope of the present discussion that will go up to
two detectors only, but is of course a topic of interest for applications). As we did in Fig. 2.4,
we show both ticks in a given time window (in black) and with a rescaling of the unit of time
so that their densities are equal (in green). Here as well, the relative emission rates mean that
longer integration times are required when collecting away from the peaks. The gain in terms
of correlation strengths, however, makes it worthwhile to focus on these regions of reduced
emission, in a spirit akin to distillation, as has done del Valle (2013) by trading quantity for
quality. The frequency windows have been chosen as they correspond to particular cases of
interest:

i Photons from the central peak.

ii Case where g(rz)(O) = 2 (usually attributed to thermal light).

iii Photons from leapfrog emission.

()

iv Case where g’

(0) = 1 (usually attributed to coherent or uncorrelated light).

v Photons from a side peak.

The central peak is partially thermalized, with a g () that closely resembles the form of
thermal fluctuations, g®(r) = 1+ exp(=2|7|/7,). Upon closer inspection, however, this is an
approximation as the exact solution presents small departures, in particular, a differentiable
slope at the origin and small ripples that are thinly visible on the theory curve, that we keep
separate from the Monte Carlo data for clarity (the quality of their agreement is shown in
the rightmost column). Note that the dynamics of coherent driving of a two-level system is
considerably more complicated than its incoherent counterpart and we could not find, so far, a
general closed-form expression for gl(_z)(r) (not even in the case in which o, = w,;). Applying the
technique of effective-quantum state reconstruction from the correlators, that I will discuss in
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Figure 2.6: Frequency-resolved Monte Carlo simulation of the Mollow triplet in independent frequency
windows. The dotted (solid) lineshape is the triplet as detected by an ideal (finite-bandwidth I') detector.
Sequences of clicks in the frequency windows i—v have been recorded, with 17241, 22836, 99457, 9112 and
46126 events, respectively. Small samples are displayed, in the same time window (black ticks, up) or with
renormalization of time to compare equal intensities (green ticks, bottom). Clear structures are visible
even to the naked eye, in particular, the existence of leapfrog emission is obvious. Only one detector has
been used, so the streams are not here cross-correlated. The autocorrelations are shown as measured by
the Monte Carlo data (left column), as computed by the theory of frequency-resolved photon correlation
(2nd column, red) and both superimposed (right column), to show their rich fine structure and the
overall agreement. The effective quantum state reconstruction is shown at the bottom, together with fits
to fundamental distributions. Panel v has its successive emission probabilities brought together to show
the exponential extinction of higher photon-numbers. 1/y, sets the unit, Q = 5y, and I" = y,;. The clicks
correspond to the emission events of the operators L, and Ls in Eq. (2.20).

detail in the next Chapter, we find that the statistics p(n) fits well with a cothermal distribution
with ~ 80% of thermal emission and ~ 20% of uncorrelated emission. Overall, the emission
of the central peak is thus well described by a mixture of thermal and uncorrelated light.
It is, as such, not very interesting per se. Turning now to the second frequency window, ii,
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which features g(rz) (0) =2, characteristic of thermal emission, one can now see more clearly the
deviation from the thermal paradigm, with bulging and tails deforming the correlation function.
These are well reproduced by the Monte Carlo statistics and we let the reader decide if their
statistical acuity lets them, on the small sample of clicks reported here, observe deviations from
the thermal paradigm (cf. Fig. 2.4viii).

The most interesting window, iii, lies halfway between the central and side peak. This is the
frequency at which, following Gonzalez-Tudela et al. (2013)’s interpretation of the theory, two
photons can make a leapfrog process from the state |[+) in a given manifold to the state |-)
two manifolds below, jumping over the intermediate manifold, cf. the transition highlighted
by the yellow arrow in Fig. 1.15(d). These photons are strongly correlated in several ways.
From a photo-detection point of view, they should arise as more occurrences of closely-spaced
two-photon clicks than if the emission was uncorrelated. In particular, their rate of coincidences
should increase, leading to gl(,Z)(O) > 2, or so-called superbunching. This is both predicted
by the exact theory done by del Valle et al. (2012) and Gonzélez-Tudela et al. (2013) and
observed in our Monte Carlo simulations, as seen in Fig. 2.6. Remarkably, even with as few
as 9112 clicks collected in the numerical experiment, we can reconstruct a high-quality signal,
revealing the fine details of its structure. Note as well that on the real-time series of clicks,
out of the nine photons emitted shown here, four came as two-photon bundles (the fifth and
sixth clicks are so closely spaced as almost overlapping; other ticks are single-photon events).
The small sample of clicks also shows strong ordering, combining equal spacing and gaps
of no emission. While the latter is characteristic of thermal emission, the former is typically
characteristic of antibunching. This combination can be seen as the selection through filtering
of strongly correlated emission from the emitter, rather than tampering from the filters on the
statistics: focusing to this frequency windows allows us to detect the two-photon emission
events that occurs, from the dressed-atom picture, at this frequency. It would be rewarding
to apply this technique to the filtered emission of Sinchez Mufioz et al. (2014a)’s “bundler”
that emits the majority, and in some regime, close to 100%, of its light as N-photon emission,
specially since Sanchez Mufioz (2016) and Sanchez Mufioz et al. (2018) have found that filtering
can considerably boost the purity of the quantum emission. Also further photon-counting
characterization would certainly be enlightening, and preliminary investigations show that
the percentage of closely-spaced photons is over an order of magnitude higher in iii than in
the others at the exception of ii, as compared to which it is only about 3.8 times larger. We
leave further characterizations for future works, but provide a last compelling manifestation of
leapfrog emission from the effective quantum state reconstruction approach. This highlights
the frequency window iii as the most dissimilar one as compared to the others, featuring a
neat kink at the probability to have two photons, p(2), showing the relative predominance of
two-photon emission.

The fourth frequency window, iv, chosen for its gl(,z)(O) = 1 of uncorrelated emission, is
also a case that shows strong departures at nonzero r due to filtering. This is, here again,
well captured by the Monte Carlo clicks and is visibly noticeable on the small sample, that
features ordered clumps of uncorrelated clicks. With the last window, v, we come back to a case
well studied in the literature, of antibunched emission, albeit far from perfect (gl(,z)(O) ~ 0.42
and min, g(rz) () ~ 0.37). The fact that the minimum antibunching is not at zero is another
manifestation of frequency filtering, thinly visible on the figure as small oscillations, but not
reproduced at this level of signal by the Monte Carlo data. Correspondingly, the p(n) shows
increasingly suppressed probabilities to get higher number of photons.
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2.3.4.2 Cross-correlations

We now consider cross-correlations, for which the Mollow triplet is also a particularly suitable
lineshape. That is to say, we consider two detectors acquiring data simultaneously. The master
equation for two detectors upgrade Eq. (2.14) to:

+ Y I; — ¥
0p= i P HD-+ @, fllf,‘| +_6£6P+ <_l£ Pt aiYo'F.{[Up’gi‘]+[§i7p6T]}> s (2'19)
! l Z Si 2 i:ZL2 2 & i

i=1,2

with &, &, the two detectors. The factors a; = yy(1 — ) and a, = (1 — 5 — x1)(1 — x3), satisfying
simultaneously 0 < g, x1. 12, 73 < 1 and x5+ y; < 1, take into account the several decay
channels of the source: a fraction y, into free space, a fraction y, to the detector £, and the
remaining fraction (1 — yy — x;) to the detector &,. In analogy with the case of a single detector,
the system described by the master equation (2.19) has five collapse operators:

Ly=y/xrs0+ VU= &, L, =\ —xo—x)Vs 0+ V(= 308, Ly= VXY 0,
Ly=+vxI'é and Ls=+/ 3016, (2.20)

and its associated non-hermitian Hamiltonian becomes

5 . i
H=H,+H; +H, —i(\Ja,7,I' &0 +\/ary,T, £l0) - E(yaa‘a +0EE +TElE) . (221)

As for the case of autocorrelations, one could similarly demonstrate the equivalence between
cross-correlations to any orders as computed through the frequency-resolved photon correlations
and those obtained through Eq. (2.19) above. Also, as was done before for single frequency
windows, by applying the Monte Carlo techniques to the detectors, one can thus obtain
simulated photon emissions, this time in two frequency windows. Computing the correlations
from this raw data provides a numerical version of the theoretical correlations. This is shown
in Fig. 2.7 for the joint emission of the two sidebands on the one hand, and then of the two
leapfrog windows on the other hand, both when driving the two-level system at resonance or
with a detuning.

While we considered a small subset only of the possible autocorrelations in Fig. 2.6 for the
Monte Carlo data, we could still provide a comprehensive theoretical result at least for gl(,z(O)
through the color-coded spectrum. For cross-correlations, however, this would require a 2D plot
to reproduce the entire two-photon correlation spectrum predicted by Gonzalez-Tudela et al.
(2013). Instead, we consider here the case where one detector is fixed and the other one sweeps
the rest of the spectrum, providing the cross-correlations. We then place the other detector for
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