Correlations
For the Binomial distribution

$$
X=\sum_{i=1}^{n} B_{i}
$$

B_{i} : Random variable following the Bernoulli dist.

Toss a coin N times
$B: \rightarrow$ follows the same distribution
\rightarrow the same object
$P\left(B_{i}=0\right)=P\left(B_{i}=1\right)=1 / 2$ true for every

$$
i=1, \ldots, N
$$

Why don't we use the same variable? \rightarrow were repeating the experiment.

$$
\underline{X}=\sum_{i=1}^{N} B=N B \begin{cases}0 & \text { we're missing all } \\ N & \text { the values in between }\end{cases}
$$

If each B_{i} is independent \rightarrow we ean have $0 \leq X \leq N$
the outcome of a given experiment is completely independent from the outcome of the previous one
Random variables do NOT need to be independent. Let's consider a dice

X: One side of the dice
Y : opposite side of X
$\bar{X}+y=7 \Rightarrow$ we know by construction

IX: $\begin{array}{llllllll} & 2 & 5 & 6 & 1 & 1 & 3 & 4\end{array}$
Y: $\begin{array}{lllllll}5 & 2 & 1 & 6 & 6 & 4 & 3\end{array}$
Xt Y: 7777777 Not random anymore
Perfect correlation: we can infer the vale of \bar{Y} by only measuring X.
X: $\begin{array}{llllllll}2 & 5 & 6 & 1 & 1 & 3 & 4\end{array}$
X + Y: 7677897 There's a degree a correlation, but it is not perfect
Correlations are not restricted to the sum of two (or more) random variables
\rightarrow In general we see correlations in the output of an operation
Joint probability distribution
X: it follows a distribution $P(k): \sum_{k}^{\prime} P(k)=1$
\bar{Y} : it follows a distribution $P^{\prime}(l): \sum_{l}^{k} P^{\prime}(l)=1$
k are the possible values that \bar{X} can take
l are the possible values that Y can take we need a joint prob. dist.
$P(\bar{X}=k, \bar{Y}=l) \quad$ Probability that $\bar{x}=k$ while

$$
I=l .
$$

The normalization becomes

$$
\begin{gathered}
\sum_{k} \sum_{l} P(X=k ; Y \bar{Y}=l)=1 \\
\sum_{k, l} P(k, l)=1
\end{gathered}
$$

If the two random variables are independent

$$
P\left(X=k, Y^{\prime}=l\right)=P(X=k) P^{\prime}(Y=l)
$$

Coin 1 Coin 2

$$
\begin{array}{lllll}
H & T & H & T & H, H \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & H, T \\
& & T, H & 1 / 2 \cdot 1 / 2=1 / 4 \\
& & & T, T & 1 / 2 \cdot 1 / 2=1 / 2=1 / 4 \\
& & & & \\
& & & 1 / 4
\end{array}
$$

In general, we have that

$$
P\left(X=k, y^{Y}=l\right) \neq P(\bar{X}=k) P^{\prime}(y=l)
$$

we have correlated random variables
There are correlations between the variables Reduced probability distribution
$\sum_{l} P(k, l)=P_{\underline{x}}(k): \begin{aligned} & \text { Probability of } \bar{X}=k \text { indepen- } \\ & \text { dently of the value of } \bar{Y}\end{aligned}$
$\sum_{k} P(k, l)=P_{Y}(l) \quad \begin{aligned} & \text { Probability of } Y=l \text { indepen- } \\ & \text { dently of the value of } X\end{aligned}$
Note that in general $P(k, l) \neq P_{X}(k) P_{Y Y}(l)$
This is a good approximation
"we're neglecting the correlations between X and I"
Average is linear: Proof

$$
\begin{aligned}
\left\langle X+Y^{\prime}\right\rangle & =\sum_{k, l}(k+l) P(k, l) \\
& =\sum_{k, l} k P(k, l)+\sum_{k, l} l P(k, l)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k} k \sum_{l} P(k, l)+\sum_{l} l \sum_{k}^{\prime} P(k, l) \\
& =\sum_{k} k P_{\bar{X}}(k)+\sum_{l} l \underline{P}_{Y}(l) \\
& =\langle\bar{X}\rangle+\langle\underline{Y}\rangle
\end{aligned}
$$

This also applies to the scaling of the random variable $\langle\alpha X+\beta Y\rangle \quad \alpha, \beta \in \mathbb{R}$.

$$
\langle\alpha \underline{X}+\beta Y\rangle=\alpha\langle X\rangle+\beta\langle Y\rangle
$$

In contrast, we don't have $\langle x y\rangle=\langle x\rangle\langle y\rangle$ This is not true in general.
$\langle X Y\rangle=\langle X\rangle\langle\bar{Y}\rangle$ only if \bar{X} and \bar{Y} are uncorrelated
Proof:

$$
\begin{aligned}
\langle X X\rangle & =\sum_{k, l} k l P(k, l) \\
& =\sum_{k l} k l P(k) P^{\prime}(l) \\
& =\sum_{k} \sum_{l} k l P(k) P^{\prime}(l) \\
& =\sum_{k} k P(k) \sum_{l} l P^{\prime}(l)=\langle X\rangle\langle Y\rangle
\end{aligned}
$$

If $P(k, l) \neq P(k) P^{\prime}(l)$

$$
\begin{aligned}
\langle X Y\rangle=\sum_{k, l} k l P(k, l) & =\sum_{k} k \sum_{l} l P(k, l) \\
\langle\bar{Y}\rangle_{k}=\sum_{l} l P(k, l) & =\sum_{k} k\langle\bar{Y}\rangle_{k}=\langle X \bar{Y}\rangle
\end{aligned}
$$

