Postlutes of Quantum Hechanics

John von Neumann

I. The state of a grantum porticle is represented by a normalized vector 1217 in a Hilbert spece we can do algebra Probabilistic nature of QM. $x, p \rightarrow \Psi(x) = \langle x| \Psi \rangle$

Nox): is familiar to us INY: is the same vector in Dirac indication

2. Observables are represented by Hermitian operators & correspond to measurements V(K) cannot be measured, >> can be reconstructed from several measurents. & act on a vector => enother vector in the same (Hilbert) space.

3. The possible neasurements of
$$\hat{\alpha}$$
 are its eigenvalues
and the state after the measurement is the
corresponding eigenvector (Collopse of the WF).
 $\hat{\alpha}$ [12] = $\hat{\lambda}_{i}$ ($\hat{\lambda}_{i}$) vector As many 12: $\hat{\lambda}_{i}$ es dim($\hat{\alpha}$)
 $\hat{\alpha}$ [12] = $\hat{\lambda}_{i}$ ($\hat{\lambda}_{i}$) vector As many 12: $\hat{\lambda}_{i}$ es dim($\hat{\alpha}$)
 $\hat{\lambda}_{i}$ for $\hat{i} = 1, 2, ..., \infty$
It orthonormulised
 $\underline{\lambda}_{i}$ [$\hat{\lambda}_{i}$] $\hat{\lambda}_{i} = \delta_{ij} = \int_{0}^{1} \frac{1}{2j}$
Then [$\hat{\lambda}_{i}$] are a basis for the space their contains
 $1\times \hat{\lambda}_{i}$
 $1\times \hat{\lambda}_{i} = \hat{\lambda}_{i} (1\times \hat{\lambda}_{i})$
 $1\times \hat{\lambda}_{i} \in \mathcal{C}$
 $\hat{\sum}_{i=1}^{n} \hat{\lambda}_{i} (1\times \hat{\lambda}_{i})$ $\hat{\lambda}_{i} \in \mathcal{C}$
 $\hat{\sum}_{k=1}^{n} |\hat{\lambda}_{k} \times \lambda_{k}|$: Sum of projections
 $(\hat{\sum}_{k=1}^{n} |\hat{\lambda}_{k} \times \lambda_{k}|) |\hat{\mathcal{W}} = (\hat{\sum}_{k=1}^{n} |\hat{\lambda}_{k} \times \lambda_{k}|) \hat{\sum}_{i=1}^{n} \hat{\kappa}_{i} (1\times \hat{\lambda}_{i})$
 $= \hat{\sum}_{k_{i}=1}^{n} \hat{\lambda}_{i} (1\times \hat{\lambda}_{k}) \hat{\lambda}_{k} |\hat{\lambda}_{i}$
 $= \hat{\sum}_{k_{i}=1}^{n} \hat{\kappa}_{i} (1\times \hat{\lambda}_{k}) \hat{\lambda}_{k} |\hat{\lambda}_{i}$

$$= \sum_{k,i=1}^{n} \alpha_i |\lambda_k\rangle \, \delta_{ki}$$
$$= \sum_{i=1}^{n} \alpha_i |\lambda_i\rangle$$

= 147 Z [XKXXK] = 11 The unit operator! For the continuous Hilbert space 11 = Jdx [XXX]

l

If we stort with MY
G neasure Q and find L:
G the state vector is now the collapsed to Ili?!
Example: Quantum Com
MY =
$$\alpha$$
 IHY + β ITY $|\alpha|^2 + 1\beta|^2 = 1$
Prob. to get IHY is $|\alpha|^2$
ITY is $|\beta|^2$
If we necesure and find heads \Rightarrow $MY = HHY$
• Prob. to get $|HY = 2$
 $|TY = 0$ $\int The wThese collapsed
 $|TY = 0$ $\int The work $|THK|^2$
 $|TY = 0$ $\int The work $|THK|^2$
 $|TY = 0$ $\int The work $|THK|^2$ $|THK|^2$
 $|TY = 0$ $\int The work $|THK|^2$ $|THK|^2$
 $|TY = 0$ $\int The wThese collapsed $|TY = 0$ $\int The work $|THK|^2$
 $|TY = 0$ $\int The work $|THK|^2$ $|THK|^2$
 $|TY = 0$ $\int The work $|TY = 0$ $\int The work $|THK|^2$
 $|TY = 0$ $\int The work $|TY = 0$ $The work $|THK|^2$
 $|TY = 0$ $The starte collapsed to measure $|THK|^2$ $|THK|^2$
 $|TY = 0$ $The starte collapsed to measure $|THK|^2$ $|THK|^2$
 $|TY = 0$ $The starte $|TY = 0$ $The work $|THK|^2$ $|THK|^2$
 $|TY = 0$ $The work $|TY = 0$ $The$$

5. The time evolution of the state vector is guen by Schrödinger Eq. it de his = A his · Separation of variables time-ind. Schrödinger Eq. ĤNY = ENY: engenvalue problem for the Hamiltonian (energy) operator