Vector spaces and linear algebra
John vo Newman \rightarrow unification of Q.M. maths ho Mathematical rules of Q.M.
Vector space

- Algebraic structure
\rightarrow we are used to geometrical vector $\vec{u}, \vec{v} ; \Rightarrow \vec{v}+\vec{u}$

Tall-to-head nether

Parallelogram method

In quantum physics we use the Dirac notation $|\ldots\rangle$: vector: "a Ret"
"..." what labels our vector
A vector space consists of a set of vectors

$$
|\alpha\rangle,|\beta\rangle,|\gamma\rangle \ldots
$$

and some scalars ("numbers"), $a, b, c \in \mathbb{C}$ $a, b, c, \in \mathbb{C}: a, b, c, \ldots$ belong to the set of complex numbers
Algebra \rightarrow vector addition:
$|\alpha\rangle+|\beta\rangle=|k\rangle$ is also in the vector
scalar multiplication
$a|\alpha\rangle=|k\rangle$ is also in the vector space

Linear combination

$$
a|\alpha\rangle+b|\beta\rangle+c|\gamma\rangle+\cdots
$$

|入) is linearly independent from the set

$$
|\alpha\rangle,|\beta\rangle,|\alpha\rangle \ldots
$$

If we cannot write

$$
|\lambda\rangle \neq a|\alpha\rangle+b|\beta\rangle+c|\gamma\rangle \cdots
$$

A set of vectors is linearly independent if no vector in the set is a linear combination of the others

A set of vectors spans the vector space if every vector (in the space) can be written as a linear superposition of the vectors in the set
A set of linearly independent vectors that spans the space is a basis
The number of vectors in a basis is the dimension of the space
Example:

$\left\{\begin{array}{l}\text { with } u_{x}, u_{y}, u_{z} \in \mathbb{C} .\end{array}\right.$ of the ${ }^{3 D}$ cartesian space, which has dimension 3

Finite-dimensional space
All vectors can be written as a finite sum of other vectors (on the basis)

Basis: $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$
dimension is n
Every vector $|\alpha\rangle$ can be written as

$$
|\alpha\rangle=a_{1}\left|e_{1}\right\rangle+a_{2}\left|e_{2}\right\rangle+\cdots+a_{n}\left|e_{n}\right\rangle
$$

The scalars $a_{1}, \ldots a_{n}$ are the components or coordinates of $|\alpha\rangle$ in the basis of $\left|e_{i}\right\rangle$

$$
\begin{aligned}
& |\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
& \vec{u}=\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right)
\end{aligned}
$$

These are a particular case of the algebra of Tables

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right. \text { Matrix (pl. Matrices) }
$$

rectangular $(m \neq n)$ or squared $(m=n)$ matrix

Matrices also follow their algebra of addition I adding components one by one) and scalar multiplication (rescalling all elements) operation on Matrices
Transposition
The transpose (A^{\top} : "A transposed") interchanges rows and columns

$$
A^{\top}=\left(\begin{array}{ccccc}
a_{11} & a_{21} & a_{31} & \cdots & a_{m 1} \\
a_{12} & a_{22} & a_{32} & \cdots & a_{m 2} \\
a_{13} & a_{23} & a_{33} & \cdots & a_{m 3} \\
\vdots & & & & \\
a_{1 n} & a_{2 n} & a_{3 n} & \cdots & a_{m n}
\end{array} \text { A } m \times n \text { matrix } \text { is } n \times m\right. \text { A rich }
$$

If A is squared $(m=n)$, the determinant

$$
\operatorname{det}\left(A \left|=|A|=\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right|\right.\right.
$$

Example:

$$
\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

Note that $|\alpha\rangle^{\top}$

$$
|\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \Rightarrow|\alpha|^{\top}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

When working with complex-valved vector fields, it's better to also take the complex conjugate when transposing

Apply the "transpose-conjugate" operation

- Hermitian conjugate \Rightarrow Hermite
- Adjoint
we use the symbol A^{t} : "A dagger"

$$
\begin{aligned}
& A^{+} \equiv\left(A^{\top}\right)^{*} \\
& |\alpha\rangle^{t}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)^{T^{*}}=\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right) \equiv\langle\alpha| \\
& |\alpha\rangle^{+} \equiv\langle\alpha|
\end{aligned}
$$

"The bra of $|\alpha\rangle$ "

Scalar product

$$
\vec{u} \cdot \vec{v}=u v \cos \theta \text { : shadow that } \vec{v} \text { casts }
$$

 upon \vec{u}.

$$
\vec{u} \cdot \vec{v}=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}
$$

For abstract vectors the scalar product is called inner product

$$
\begin{aligned}
& \langle\beta|=\left(b_{1}^{*} b_{2}^{*}, \ldots b_{n}^{*}\right) \\
& \begin{aligned}
\langle\beta \mid \alpha\rangle & =\left(\begin{array}{llll}
b_{1}^{*} & b_{2}^{*}, \ldots & b_{n}^{*}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
c_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
& =b_{1}^{*} a_{1}+b_{2}^{*} a_{2}+\cdots+b_{n}^{*} a_{n} \text { : scalar }
\end{aligned}
\end{aligned}
$$

If we take

$$
\begin{aligned}
\langle\alpha \mid \alpha\rangle & =a_{1}^{*} a_{1}+a_{2}^{*} a_{2}+\cdots+a_{n}^{*} a_{n} \\
& =\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{n}\right|^{2}: \text { Real number }
\end{aligned}
$$

The norm (lenght) of the vector:

$$
\|\alpha\| \equiv \sqrt{\langle\alpha \mid \alpha\rangle}
$$

Two vectors that have zero scalar product are orthogonal

Vectors in a basis should

- be normalized: $\left\|e_{i}\right\|=1$
- be mutually orthogonal: $\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$
$\delta_{i j}:$ Kronecker symbol
Applications or transformations
Functions that act on vectors
Let's assume a linear function T

$$
T(a|\alpha\rangle+b|\beta\rangle)=a T|\alpha\rangle+b T|\beta\rangle
$$

We have full knowledge of T if we know the effect that T has on every elewent of the basis

$$
\begin{aligned}
& T\left|e_{1}\right\rangle=T_{11}\left|e_{1}\right\rangle+T_{21}\left|e_{2}\right\rangle+\cdots+T_{n 1}\left|e_{n}\right\rangle \\
& T\left|e_{2}\right\rangle=T_{12}\left|e_{1}\right\rangle+T_{22}\left|e_{2}\right\rangle+\cdots+T_{n 2}\left|e_{n}\right\rangle \\
& \vdots \\
& T\left|e_{n}\right\rangle=T_{1 n}\left|e_{1}\right\rangle+T_{2 n}\left|e_{2}\right\rangle+\cdots+T_{n n}\left|e_{n}\right\rangle
\end{aligned}
$$

For any vector $|\alpha\rangle$ we compute $T|\alpha\rangle$ by decomposing $|\alpha\rangle$ in the elem. of the basis

$$
\begin{aligned}
& \begin{aligned}
|\alpha\rangle= & \sum_{i=1}^{n} a_{i}\left|e_{i}\right\rangle=a_{1}\left|e_{1}\right\rangle+a_{2}\left|e_{2}\right\rangle+\cdots+a_{n}\left|e_{n}\right\rangle \\
T|\alpha\rangle= & \sum_{i=1}^{n} a_{i} T\left|e_{i}\right\rangle \\
& T\left|e_{i}\right\rangle=T_{1:}\left|e_{1}\right\rangle+T_{2 i}\left|e_{2}\right\rangle+\cdots+T_{n i}\left|e_{n}\right\rangle \\
= & \sum_{k=1}^{n} T_{k i}\left|e_{k}\right\rangle
\end{aligned} \\
& \begin{aligned}
T|\alpha\rangle= & \sum_{i=1}^{n} a_{i} \sum_{k=1}^{n} T_{k i}\left|e_{k}\right\rangle \\
= & \sum_{k=1}^{n}\left(\sum_{i=1}^{n} T_{k i} a_{i}\right)\left|e_{k}\right\rangle=\left(\begin{array}{l}
\sum_{i=1}^{n} T_{1 i} a_{i} \\
\sum_{i=1}^{n} T_{2 i} a_{i} \\
\vdots \\
\sum_{i=1}^{n} T_{n i} a_{i}
\end{array}\right)=T|\alpha\rangle
\end{aligned}
\end{aligned}
$$

The transformation is reduced to a matrix

$$
T=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right)
$$

Hermitian transformation

$$
T=T^{+}: T \text { is Hermitian }
$$

Unitary: $T^{-1}=T^{+}: T$ is unitary

Eigenvector
Don't get rotated in space, only rescaled
$T|\alpha\rangle=\lambda|\alpha\rangle \quad:$ with λ a scalar $|\alpha\rangle$ is an eigenvector of T with eigenvalue λ

$$
\begin{aligned}
& T|\alpha\rangle=\lambda \mathbb{1}|\alpha\rangle \\
& T|\alpha\rangle-\lambda \mathbb{1}|\alpha\rangle=0 \quad|\alpha\rangle \text { is nonzero }
\end{aligned}
$$

$$
(T-\lambda \mathbb{1})|\alpha\rangle=0 \quad \Rightarrow \quad T-\lambda \mathbb{1} \text { has to be singular }
$$ not invertible

$$
\operatorname{det}(T-\lambda \mathbb{1})=\left|\begin{array}{cccc}
T_{11-\lambda} & T_{12} & \ldots & T_{1 n} \\
T_{21} & T_{22}-\lambda & \cdots & T_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n-\lambda}
\end{array}\right|=0
$$

polynomial equation for λ of order n.
For Hermitian matrices

- Eigenvalues of a Hermitian transformation are real number
- Eigenvectors of a Hermitian transformation belonging to distinct eigenvalues are orthogonal
- The agenvector of a Hermitial transformation span the space

Infinite-dimensional spaces

- Countable (like integers)
- Continuous (like the set of real numbers) vectors can be functions \Rightarrow function spaces Upgrade

$$
\sum \rightarrow \int
$$

We could write the scalar product in the following way (between two vector functions)

$$
\langle f \mid g\rangle=\int f^{*}(x) g(x) d x
$$

Transformations will be done through linear operator. For instances

$$
\frac{d}{d x}, \frac{d^{2}}{d x^{2}} \text {, or simply: } x
$$

