operators in the Hilbert space
$\vec{v}, f(x)$, Matrices
Functions of vectors
$f(\alpha|v\rangle)=\alpha f(|v\rangle):$ function is linear $\alpha \in \Phi \quad|v\rangle \in V$
$\hat{\top}$ : operator

$$
\begin{aligned}
& \hat{T} \sum_{i=1}^{n} \alpha_{i}\left|e_{i}\right\rangle=\sum_{i=1}^{n} \alpha_{i} \hat{T}\left|e_{i}\right\rangle \\
& \alpha_{i} \in \mathbb{\mathbb { C }} \\
& \hat{\dagger}\left|e_{i}\right\rangle=\sum_{j=1}^{n} T_{i j}\left|e_{j}\right\rangle \\
& \Rightarrow \hat{T} \sum_{i=1}^{n} \alpha_{i}\left|e_{i}\right\rangle=\sum_{i=1}^{n} \alpha_{i} \hat{T}\left|e_{i}\right\rangle \\
& =\sum_{i=1}^{n} \alpha_{i} \sum_{j=1}^{n} T_{i j}\left|e_{j}\right\rangle \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \alpha_{i} T_{i j}\right)\left|e_{j}\right\rangle \\
& =\sum_{j=1}^{n} \beta_{j}\left|e_{j}\right\rangle \\
& \beta_{j}=\sum_{i=1}^{n} \alpha_{i} T_{i j} \begin{array}{l}
\text { only depends } \\
\text { on } j
\end{array}
\end{aligned}
$$

Transformed
vector vector
$\hat{T}$ has matrix form
$\hat{T}=\left(\begin{array}{cccc}T_{11} & T_{12} & \cdots & T_{1 n} \\ T_{21} & T_{22} & \cdots & T_{2 n} \\ \vdots & \vdots & & \vdots \\ T_{n 1} & T_{n 2} & & T_{n n}\end{array}\right) \quad$ finite divension

Operator has infinite dmension (number of photons in a box)

$$
\hat{T}=\left(\begin{array}{cc}
T_{11} & T_{12} \\
T_{21} & \cdots \\
\vdots &
\end{array}\right) \text { the matrix just goes }
$$

Think $\hat{x}$ or $\hat{p}$
$h$ both continuous
$|x\rangle$ : basis vector

$$
\hat{x}|x\rangle=x|x\rangle
$$

$$
\hat{p}|x\rangle=-i \hbar \partial x|x\rangle
$$

we cannot write these operators as a matrix!

$$
|u\rangle=\sum_{i=1}^{n} \alpha_{i}\left|e_{i}\right\rangle \quad \Rightarrow|v\rangle=\hat{T}|u\rangle
$$

Particular vector $|f\rangle$ such that

$$
\hat{T}|f\rangle=\lambda|f\rangle \quad \lambda \in \mathbb{C} .
$$

Example: $\tilde{\sigma}_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

$\lambda_{t}, \lambda_{-}$are the eigenvalues $\rightarrow$ turn operators into scalars!

$$
\hat{T}|f\rangle=\lambda|f\rangle \Rightarrow(\hat{T}-\lambda 11)|f\rangle=0
$$

11: Id. matrix with $\operatorname{dim}(\tilde{T})$
$|f\rangle=0$ is a trinal solution $b$ tworks indep. ( $\hat{T}-\lambda 11)$

not possible
we need $\hat{T}-\lambda 11$ to be singular (cannot be muerted)
If $(\hat{T}-\lambda 11)$ is singular $\Rightarrow \operatorname{det}(\hat{T}-\lambda 11)=0$

- polynomial eq. for $\lambda$
- Number of solutions $($ roots $)=\operatorname{dim}(\tau)$
$=$ Number of eigenveotias of $\hat{T}$

Special group of operators: Observables $\hat{O}$ are operators for which al their $\lambda$ are reul-valued

- Can be the result of a measurement on WF.
- $\hat{T}=\hat{T}^{+}$"dagger" $\hat{T}^{+}=\left(T^{*}\right)^{\top}$

$$
\hat{T}=\left(\begin{array}{ccc}
T_{11} & T_{12} & \cdots \\
T_{21} & T_{22} & T_{2 n} \\
\vdots & \vdots & \vdots \\
T_{n 1} & T_{n 2} & T_{n n}
\end{array}\right) \Rightarrow \hat{T}^{+}=\left(\begin{array}{cccc}
T_{11}^{*} & T_{21}^{*} & \cdots & T_{n 1}^{*} \\
T_{12}^{*} & T_{22}^{*} & \cdots & T_{n 2}^{*} \\
\vdots & \vdots & & \vdots \\
T_{1 n}^{*} & T_{2 n}^{*} & & T_{n n}^{*}
\end{array}\right)
$$

$\hat{T}=\hat{T}^{+}$: Hermitian (Hermite).

