Discrete Prob. Distributions
Bernouilli distribution
\rightarrow two possible outcomes with probabilities p and q.
X: random variable

$$
\begin{aligned}
& P(\bar{X}=0)=q \quad p+q=1 \Rightarrow q=1-p \\
& P(\bar{X}=1)=p \\
& \langle\bar{X}\rangle=0 \cdot P(\bar{X}=0)+1 P(\bar{X}=1) \\
& \\
& =0 \cdot q+1 \cdot p=p \\
& \left\langle\bar{X}^{2}\right\rangle=p \\
& \operatorname{Var}(\bar{X})=\left\langle\bar{X}^{2}\right\rangle-\langle\bar{X}\rangle^{2} \\
& \\
& =p-p^{2}=p(1-p)=p q
\end{aligned}
$$

Binomial distribution
N independent Bernovilli random variables B_{i}

$$
\bar{X}=B_{1}+B_{2}+\cdots+B_{N}
$$

Tossing of N biased coins; with X. the number of Heads that we get What is the distribution of \bar{X} ?

$$
\begin{aligned}
& \text { HHTHTTT } \\
& \bar{x}=3 . \quad \begin{array}{l}
\quad \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
\end{array} \\
& p p q p q q q=p^{3} q^{4}: \begin{array}{l}
\text { Probability } \\
\text { of having } 3 H \\
\text { out of } 7 \text { tosses }
\end{array}
\end{aligned}
$$

otter sequences also have this prob.

$$
\begin{array}{ll}
\text { HHHTTTT } \rightarrow p^{3} q^{4} & \text { Pppqqqq } \\
\text { TTTTHHH } \rightarrow p^{3} q^{4} & q q q q P p P
\end{array}
$$

Concept of the Binomial

$$
\begin{aligned}
(a+b)^{n} & =(a+b)(a+b) \cdots(a+b) \\
& \longrightarrow n-3+\text { woos } \\
& =a^{n}+n a^{n-1} b+\cdots
\end{aligned}
$$

The first element
$a^{n}=a \cdot a \cdot \cdots \cdot a \Rightarrow$ there's only one segunce $a c i a c i a a b \quad \Rightarrow 7$ ways to accommodate b $a^{n-1} b \quad \Rightarrow n$ ways to accommodate b $a^{n-2} b^{2}$
$\Rightarrow \frac{n(n-1)}{2}$ ways to accommodate
two b's
To accommode k b's we have

$$
\begin{aligned}
& n(n-1) \cdots(n-k-1) \text { options } \\
& n(n-1) \cdots(n-k-1)=\frac{n!}{(n-k)!}
\end{aligned}
$$

n !: n factorial

$$
n!=n \cdot(n-1) \cdot(n-2) \cdots 1
$$

There are k instances of b, we have k ! ways to arrange them

In total, the number of distinguishable configurations is

$$
\frac{n!}{(n-k)!} \frac{1}{k!} \equiv\binom{n}{k} \quad \begin{aligned}
& \text { "Binomial } \\
& \text { coeffient of } \\
& n \text { and } k "
\end{aligned}
$$

Number of ways to choose k indistinguishable objects out of n.

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Pascal's triangle
Bock to our example

$$
\begin{aligned}
& P(X=k)=\binom{N}{k} p^{k} q^{N-k}=\binom{N}{k} p^{k}(1-p)^{N-k} \\
& \text { Prob. having }
\end{aligned}
$$

k Heads

$$
\begin{aligned}
& \text { Show that }\langle\bar{X}\rangle=n p \\
& \qquad \operatorname{Var}(\bar{X})=n p(1-p)
\end{aligned}
$$

The Bernovilli distribution is a patieolor case of the Binomial distribution when we perform only a single experiment.

Geometric distribution
How many times should we toss the coin until we have a Heads?

$$
\begin{aligned}
& \text { TTTTTH } \rightarrow q^{5} p=(1-p)^{5} p \\
& P(\bar{X}=k)=q^{k} p=(1-p)^{k} p \quad \text { the }
\end{aligned}
$$

the dist. hus
k : can be arbitrarily large \Rightarrow infinite support The distribution still needs to be normalized

$$
\begin{aligned}
& \sum_{k=0}^{\infty} p(\bar{X}=k)=1 \quad \text { check that the } \\
& \langle\bar{X}\rangle=\frac{p}{1-p} \quad \operatorname{dar}(\bar{X})=\frac{p}{(1-p)^{2}}
\end{aligned}
$$

Poisson distribution
Binomial distribution in the limit in which

$$
\begin{array}{lll}
p \rightarrow 0 & \text { but } & n \rightarrow \infty \\
& \lambda=p n & \text { is finite }
\end{array}
$$

λ : average number of success

$$
\begin{aligned}
& \operatorname{Lim}_{n \rightarrow \infty} P(\underline{X}=k)=\operatorname{Lim}_{n \rightarrow \infty}\binom{n}{k} P^{k}(1-p)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{1}{k!} \frac{n!}{(n-k)!} \lambda^{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty} \frac{n!}{(n-k)!}\left(\frac{1}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& \text { If } \left.\begin{array}{rl}
& \lim _{x \rightarrow a} f(x)
\end{array}\right)=f(a) \quad \text { then } \operatorname{Lim}_{x \rightarrow a} f(x) g(x)=f(a) g(a) \\
& \lim _{n \rightarrow \infty} \frac{n!}{(n-k)!}\left(\frac{1}{n}\right)^{k}=\lim _{n \rightarrow \infty} \frac{n(n-1)(n-2) \cdots(n-k+1)}{n \cdot n \cdot n \cdots n} \\
& =\lim _{n \rightarrow \infty} \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \cdots \frac{(n-k+1)}{n}=1
\end{aligned}
$$

Euler identity $\quad e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
with $n=\lambda / p$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda} \\
& x=\sum_{\lambda}^{n} \rightarrow n=\lambda x \quad \text { If } n \rightarrow \infty \text {, because } \lambda \\
& \operatorname{Lim}_{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{\lambda x}
\end{aligned}
$$

Replace $x \rightarrow-y$

$$
\begin{aligned}
\lim _{y \rightarrow \infty}\left(1+\frac{1}{y}\right)^{-\lambda y} & =\left[\operatorname{Lim}_{y \rightarrow \infty}\left(1+\frac{1}{y}\right)^{y}\right]^{-\lambda} \\
& =e^{-\lambda}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{-k} \approx 1^{-k}=1
$$

$$
P(I=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \text { Poisson distribution }
$$

$$
\langle X\rangle=\lambda ; \operatorname{var}(x)=\lambda
$$

Poisson burst $P(\bar{x} \geq 2)$

