The Hilbert Space
FIELD Set where
$$t, -, x, \neq$$
 one defined
IR: reads
R: reational p/q ; where $p, q \in \mathbb{Z}$
C: complex
Other structures
by Set matrices!
A,B are matrices \Rightarrow AtB
AB \Rightarrow Not elevent
B is the inverse of A
AB = BA = 11
where A is the identity matrix $(14)^{-1}$
A adj(A) = det(A) 11
A adj(A) = det(A) 11
A dijoint determinant
of A
Matrix Scalor
A⁻¹ exist iff det (A) $\neq 0$
b if and only if
If det(A) = 0 \Rightarrow A is a Singular Matrix
VECTOR SPACE

- It consist of a set V of objects called vectors, along with another set F of numbers (afield) that are called scalars
- The vectors in V can be added

$$5_{1} v_{2} \in V \implies 5_{1} + V_{2} \in V$$

The vectors in V can be soled by elements of
 t
 $5_{1} \in V$ and $d \in F \implies d \in S$
 $F = (V_{1}, V_{2}, v_{2}, v_{2}) : geometry in a N-dimensional
type of numbers vector space
In 3D $F = (x, 1, E)$
N can be infinite \Rightarrow Let's keep it general!
Function spaces
Polynomials of order up to N: they form a vector
space J_{N}
 J_{1} $f_{1}(x) = x^{2}$ $f_{2}(x) = -3x \pm 1$
 $f_{1}, f_{2} \in S_{2}$ $f_{1}(x) + f_{2}(x) = x^{2} - 3x \pm 1$
 $f_{1}, f_{2} \in S_{2}$ $f_{1}(x) + f_{2}(x) = x^{2} - 3x \pm 1$
 $f_{1}(x) = x^{2} \neq J_{0}$ These are not a
 $f_{1} \in J_{1}$ $f_{2}(x) = f_{1}(x) + f_{2}(x) = x^{2} - 3x \pm 1$
 $f_{2}(x) = -3x^{2} + 2f_{1}(x) + f_{2}(x) = -3x \pm 1$
 $f_{3}(x) = f_{1}(x) + f_{2}(x) = -3x \pm 1$
 $f_{3}(x) = f_{1}(x) + f_{2}(x) = -3x \pm 1$
 $f_{3}(x) = x^{2} \neq J_{0}$ These are not a
 $f_{1} \in J_{1}(x) + f_{2}(x) = -3x \pm 1$
 $f_{1}(x) = x^{2} \neq J_{0}$ These are not a
 $f_{1} \in J_{1}(x) = x^{2} \neq J_{0}$ These are not a
 $f_{1} \in J_{1}(x) = x^{2} = f_{1}(x) + f_{2}(x) = -3x \pm 1$
 $f_{3}(x) = x^{2} = f_{3}(x) + f_{2}(x) = -3x \pm 1$
 $f_{3}(x) = x^{2} = f_{3}(x) + f_{2}(x) = -3x \pm 1$
 $f_{1}(x) = x^{2} = f_{1}(x) + f_{2}(x) = -3x \pm 1$
 $f_{2}(x) = -3x \pm 1$
 $f_{3}(x) = x^{2} = f_{3}(x) + f_{3}(x) = -3x \pm 1$
 $f_{3}(x) = x^{2} = f_{3}(x) + f_{3}(x) = f_{3}(x) = f_{3}(x) + f_{3}(x)$$

r, j, \hat{k} : $\vec{r} = x_0 \hat{t} + y_0 \hat{j} + z_0 \hat{k}$ Vectors are linearly independent when they cannot be written as a combination of the other.

Norther of lin. ind. vector = dimension of the space

Q.M. es defined over a complex field $\lambda u v v \in \varphi$ $\lambda u v v = \lambda v u v$ $\lambda u v v = 0$ it is = 0 iff $1 u v = 10 \gamma$

 $107 \neq 0$

In 3D: 107 origin of coordinates Q.M.: 107 is the Vacuum

For geometric vectors

$$\chi_{UIVY} = \overline{u}.\overline{v} = \overset{\vee}{\Sigma} u_i v_i$$

Tor punction space
 $\chi_{FLGY} = \int f^*(x)g(x)dx$

overlap integral

$$f also has the structure of a complex vector space
INT = $\sum_{i=1}^{n} a_i |e_i\rangle$ $\langle u| = \sum_{i=1}^{n} a_i^* \langle e_i|$
 $au_{i} |u_i\rangle = \sum_{i=1}^{n} a_i^* \langle e_i| \sum_{i=1}^{n} a_i |e_i\rangle$
 $= \sum_{i=1}^{n} \sum_{i=1}^{n} a_i^* \langle e_i| \sum_{i=1}^{n} a_i |e_i\rangle$
 $e_i |e_i\rangle = 0$ unless
 $e_i |e_i\rangle = 0$ unless$$

 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta \leq |\vec{u}| |\vec{v}|$ The interpretention is not clear in general, but it remains true LUINX $\langle v_1 v_1 \rangle \geq |\langle u_1 v_2 \rangle|^2$ Cauchy-Schwarz inequality such a vector space becomes a Hilbert space when it also a Banach space. • Complete: limiting pocess Lim $e^{-x} = 1$ Limit is also evector in the space There are no "holes" or missing vectors be we can do calados and it will vork

Q.M. Space is a Hilbert space!