The Hilbert Space
FIELD set where $t_{1}-, x, \div$ ore defined
$\mathbb{R}:$ reals
\mathbb{Q} : rational p / q; where $p, q \in \mathbb{Z}$
©: Complex
othre structures
\rightarrow set matrices!
A, B are matrices $\Rightarrow A+B$
$A B \Rightarrow$ Not element by element
B is the inverse of A

$$
A B=B A=\mathbb{1}
$$

where 1 is the identity matrix

$$
\begin{aligned}
& A \operatorname{adj}(A)=\frac{\operatorname{det}(A) \mathbb{1}}{\text { Adjoint }} \quad \Rightarrow A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) \\
& \text { of } A \text { of } A \\
& \text { Matrix Scalar }
\end{aligned}
$$

A^{-1} exist ff $\operatorname{det}(A) \neq 0$
\rightarrow if and only if
If $\operatorname{det}(A)=0 \Rightarrow A$ is a sing alar matrix vector space

- It consist of a set V of objects called vectors, along with another set F of numbers (afield) that are called scalars
- The vectors in V can be codded

$$
v_{1}, v_{2} \in V \Rightarrow v_{1}+v_{2} \in V
$$

- The vectors in V can be scaled by elements of F
$v_{1} \in V$ and $\alpha \in F \Rightarrow \alpha v_{1} \in V$
Example: Geonetrical vectors
$\vec{v}=\left(v_{1}, v_{2}, \ldots v_{N}\right)$: geometry in a N-dimensional tuple of numbers vector space

In $3 D \quad \vec{r}=(x, y, z)$
N can be infinite \Rightarrow Letis keep it general!
Funtion spaces
Polynomials of order up to N : they form a vector space ρ_{N}

$$
\begin{array}{lll}
\rho_{2} & f_{1}(x)=x^{2} & f_{2}(x)=-3 x+1 \\
f_{1}, f_{2} \in \rho_{2} & f_{1}(x)+f_{2}(x)=x^{2}-3 x+1 \quad \rho_{2} \\
& \alpha f_{1}+\beta f_{2}=\alpha x^{2}-3 \beta x+\beta \in \rho_{2}
\end{array}
$$

$f_{1}(x) f_{2}(x)=-3 x^{(3)}+x^{2} \not \& \rho_{(2)}$ The de are not a field

In Q.M. We write $1 u\rangle$ Vet
$|i\rangle=x^{i}$ for the ρ_{N}
simply notation
B asis vectors: Collection $O+$ vectors in V, such the every element of V can' be expressed as a linear combination of them.
If $\left|e_{i}\right\rangle$ form a basis:

$$
|u\rangle=\sum_{i=1}^{n} \alpha_{i}\left|e_{i}\right\rangle
$$

for some scalars α_{i} coordinates of $|u\rangle$ in the basis $\left|e_{i}\right\rangle$

$$
\hat{\imath}, \hat{\jmath} \hat{k}: \vec{r}=x_{0} \hat{\imath}+y_{0} \hat{\jmath}+\varepsilon_{0} \hat{k}
$$

vectors are linearly independent when they cannot be written as a combination of the other.
$|i\rangle=x^{i}$ are linearly ind. because x^{i} canner be written as combination of polynomials xi with $j \neq i$
Number of lin. Ind. vector $=$ dimension of the space

- 3D space $\Rightarrow 3$ line. ind vectors
- A space can have oo dim. $\Rightarrow P_{\infty}$

Conjugate vector

$$
|u\rangle^{t} \text { "dagger" } \quad|u\rangle^{t} \equiv\langle u| \text { bet bra }
$$

$\langle u \mid v\rangle \in F:$ a scalar bra-ket
Q.M. is defined over a complex field $\langle u \mid v\rangle \in \Phi$

$$
\begin{aligned}
& \langle u \mid v\rangle^{*}=\langle v \mid u\rangle \\
& \langle u \mid u\rangle \geqslant 0 \quad \text { it is }=0 \text { iff }|u\rangle=10\rangle
\end{aligned}
$$

10) $\neq 0$

In 3D: 107 origin of coordinates QM: $|0\rangle$ is the Vacuum

For geometric vectors

$$
\langle u \mid v\rangle=\bar{u} \cdot \vec{v}=\sum_{i}^{N} u_{i} v_{i}
$$

For function space
$\left\langle f(g\rangle=\int f^{*}(x) g(x) d x\right.$ overlap integral
\& also has the structure of a complex vector space

For function space

$$
\begin{array}{cc}
|i\rangle=x^{i} \quad \begin{array}{l}
\text { orthogonal } \\
\text { normal }
\end{array}
\end{array}
$$

Legendre polynomials are orthogonal $-12 x<-1$ $P_{n}(x)$

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\left(3 x^{2}-1\right) / 2
\end{aligned}
$$

$$
P_{3}(x)=\left(5 x^{2}-3 x\right) / 2
$$

$$
P_{4}(x)=\left(35 x^{4}-30 x^{2}+3\right) / 8
$$

check that
$\left\{\begin{array}{l}\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0 \text { if } m=n \\ \text { for a fee w } n \text { and } m\end{array}\right.$

$$
\begin{aligned}
& |u\rangle=\sum_{i=1}^{n} \alpha_{i}\left|e_{i}\right\rangle \\
& \langle u|=\sum_{j=1}^{n} \alpha_{j}^{*}\left\langle e_{j}\right| \\
& \langle u \mid u\rangle=\sum_{j=1}^{n} \alpha_{j}^{*}\left\langle e_{j}\right| \sum_{i=1}^{n} \alpha_{i}\left|e_{i}\right\rangle \\
& =\sum_{j=1}^{n} \sum_{j=1}^{n} \alpha_{j}^{*} \alpha_{i}\left\langle e_{j} \mid e_{i}\right\rangle \\
& \left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}= \begin{cases}0 & i \neq j \\
1 & i=j\end{cases} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j}^{\psi} \delta_{i j} \\
& \langle u \mid u\rangle=\sum_{i=1}^{n} \alpha_{i} \alpha_{i}^{*}=\sum_{i=1}^{n}\left|\alpha_{i}\right|^{2} \\
& \text { ie:) are linearly } \\
& \text { index. and orthogonal } \\
& \left\langle e_{i} \mid e_{j}\right\rangle=0 \quad \text { unless } \\
& \left\langle e_{i} \mid e_{i}\right\rangle=1 \rightarrow\left|e_{i}\right\rangle \\
& \text { are } \\
& \text { normadived } \\
& \||u\rangle \|=\sqrt{\text { Lulu }}: \text { Norm of }|u\rangle
\end{aligned}
$$

$\vec{u} \cdot \vec{v}=|\bar{u}||\vec{v}| \cos \theta \leq|\vec{u}||\vec{v}|$ The interpretation is net
 clear in general, but it remains true

$$
\langle u \mid v\rangle\langle v \mid v\rangle \geq|\langle u \mid v\rangle|^{2}
$$

lauchy-Schwarz ineguahty
such a vector space becomes a Hilbert space when it also a Banach space.

- Complete: limiting process $\operatorname{Lim}_{x \rightarrow 0} e^{-x}=1$ Limit is also avector m the space
There are no "holes" or missing vectors we can do calculus and it will work Q.M. space is a Hilbert space!

