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Abstract
The elastic scattering peak of a resonantly driven two-level system has been argued to provide
narrow-linewidth antibunched photons. Although independent measurements of spectral width
on the one hand and antibunching, on the other hand, do seem to show that this is the case, a
joint measurement reveals that only one or the other of these attributes can be realised in the
direct emission. We discuss a scheme which interferes the emission with a laser to produce
simultaneously single photons of subnatural linewidth. In particular, we consider the effect of
dephasing and of the detuning between the driving laser and/or the detector with the emitter. We
find that our scheme brings such considerable improvement as compared to the standard schemes
as to make it the best single-photon source in terms of all-order multi-photon suppression by
several orders of magnitudes. While the scheme is particularly fragile to dephasing, its
superiority holds even for subnatural-linewidth emission down to a third of the radiative lifetime.

Keywords: resonance fluorescence, qubit, single-photon source, squeezing, homodyne
interference, antibunching, light–matter interaction

(Some figures may appear in colour only in the online journal)

1. Introduction

Single photon sources lie at the heart of the quantum tech-
nologies, being fundamental for a myriad of application
including quantum key distribution [1], quantum crypto-
graphy [2–4], secure direct quantum communication [5],
quantum state amplification [6–8], or boson sampling [9–13].
Of the many schemes to implement a single-photon source
[13–33], various strategies can be adopted to favour one or
the other of its desirable characteristics, ranging from its size
and ability to interface with other optical devices [14–17], its
brightness [18–24], the indistinguishability between succes-
sive photons [24–30] and, of course, its sub-Poissonian
character [13, 31]. To give a concrete example, one can

choose to favour indistinguishability between successive
photons rather than their sub-Poissonian character [34]. More
exotic schemes have also been proposed, such as the photon
blockade, in both its conventional [35, 36] and unconven-
tional [37–39] versions (both of which have been recently
demonstrated experimentally [40–43]) or the heralding of
single photons from two-level systems driven in Mollow
triplet regime [44], let alone sources of N-photons ‘bundles’
[45, 46]. One of the most popular platforms for the generation
of single photons, both from an experimental and theoretical
point of view, is a two-level system. This can be realised
in a variety of platforms ranging from cold atoms [47–49],
to semiconductor quantum dots [25, 50–57] passing by
ions [58–60], molecules [61–64], superconducting circuits
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[65–69], nitrogen vacancies [70, 71], semiconductor nano-
crystals [72], among others. A priori, a two-level system fits
perfectly the purpose, as it can only sustain a single excitation
at any given time. Thus, its repetition rate is limited by the
time it takes to ‘reload’, and one can expect a perfectly
antibunched emission. This is however a simplified descrip-
tion that ignores a central aspect of quantum theory: the
detection process. The two-level system is characterized to
the best of its abilities only by a detector that can measure its
emission with infinite precision in time. Conversely, if the
detector has a finite temporal resolution (as is of course the
case in any actual setup), or, equivalently, a finite bandwidth,
the theoretically perfect suppression of the second-order
correlation function is spoiled by the Heisenberg uncertainty
principle [73]. This can be described accurately by the theory
of frequency-filtered correlations [74].

While the impact of detection is a fundamental principle
that applies to all quantum systems, an interesting and
somehow counter-intuitive effect occurs when turning to the
detected emission of a two-level system driven coherently in
the so-called Heitler regime [75], in which the emission of a
two-level system consists of two components: (i) photons that
are absorbed and later re-emitted (fluorescence) and (ii)
photons that are elastically scattered by the two-level system
(in a coherent absorption and re-emission process). The for-
mer are emitted with a Lorentzian profile centred at the fre-
quency of the driving laser(assuming resonance with the
two-level system) and with the natural linewidth of the two-
level system, constituting the incoherent fraction of the
emission. The latter are emitted as a δ-narrow peak (assuming
a vanishing linewidth for the laser), which forms the coherent
fraction of the emission that dominates at low driving. Like
any two-level system, the total emission is antibunched. The
idea then arose to use the δ peak to collect antibunched
photons with narrow spectral width [76, 77]. Here as well,
one must not forget the process of detection, and taking it into
account, we have shown that these two qualities are not
realised jointly [33]: the detected photons are either anti-
bunched, but with a spectral width no better than that of the
emitter itself, or they can be detected with the spectral
bandwidth of the δ peak, but then their antibunching is dra-
matically reduced. Interestingly, however, we have shown in
the same work [33] how to detect photons jointly with a
subnatural linewidth and an excellent antibunching, by
interfering the emission of the filtered two-level system with
an external laser. This laser correction removes, through
destructive interferences, the excess of coherent emission
when focusing on the δ peak, in a process akin to an homo-
dyne interference [78, 79]. Similar schemes have been
recently implemented to obtain a source of indistinguishable
photons [27], to observe the rising of the so-called dynamical
Mollow triplet [80] and to unveil the photon correlations of
the light emitted by a Jaynes–Cummings system [81]. In our
case, we find that not only this laser-correction allows to
realise simultaneously subnatural linewidth spectral emission
and antibunching, but also that it produces a stronger type of
single-photon emission with a plateau in the time-resolved
photon correlation t( )( )ga

2 . Such sources therefore provide a

new playground of their own, whose properties, advantages
over existing sources and further possibilities deserve an
immediate attention, as we wait for their experimental
implementation.

In this text, we provide a more general picture, including
other interesting features of the statistics, such as perfect
superbunching (where, to first order in the driving, ( )( )g 0a

2

becomes infinite) in addition to the previously reported per-
fect antibunching ( =( )( )g 0 0a

2 ). More particularly, we focus
on the effect of two important aspects not considered pre-
viously: the impact of dephasing, since this is a detrimental
ingredient that is typically present, especially in a solid-state
platform, and the role of detuning from the two-level system,
from either the driving laser and/or the detector.

2. Theoretical description

We consider a two-level system driven by a coherent source in
the regime of low excitation, commonly referred to as the
Heitler regime, with Hamiltonian (we take ÿ=1 along the text)

w w s s s s= - + W +s s s( ) ( ) ( )† †H . 1L

The two-level system has a frequencyωσ and is described
through an annihilation operatorσ that follows the pseudo-spin
algebra, whereas the laser is treated classically, i.e. as a c-
number, with intensityΩσ and frequencyωL. The dissipative
character of the system is included in the dynamics through a
master equation

 r r
g
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, 2t

wheregs is the decay rate of the two-level system, gf is the
dephasing rate, Hσ is the Hamiltonian in equation (1) and
 r srs s sr rs s= - -s

† † †2 . The steady-state solution of
equation (2) can be written in terms of two magnitudes: the
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with w wD = -s s( )L the detuning between the two-level
system and the driving laser.

To model the detection process self-consistently, one can
couple to this system a detector and study the observables
through this detector rather than from the object itself.
A method (the so-called ‘cascaded formalism’) has been
developed in the early 90s [82, 83] to model this theoretically.
Such a precaution avoids (or reveals) the subtle mistake of
assuming that the emitted light retains all the attributes of the
source when these are computed or measured separately. To
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take the example of interest in our discussion, one can indeed
observe (or compute) the spectral width of the two-level
system in the Heitler regime, and find an ultra-bright and
ultra-narrow component, and then observe (or compute) its
antibunching and find an excellent antibunching. These con-
stitute separate characterisations of the source, and until these
are measured simultaneously, they cannot be assumed to exist
simultaneously. Indeed, characterising the light through the
detector—which by the very nature of its excitation is being
subject to the both aspects of interest simultaneously—one
finds that the detected light is either antibunched but not
narrower than the source, or is spectrally narrow but then with
a poor or no antibunching. This depends on the spectral width
of the detector itself: if the detector has a large spectral width,
it will not be sensitive to the supposedly narrow linewidth
light that excites it. If the detector has a narrow spectral width,
it will not be sensitive to its antibunching. Given the character
of quantum mechanics, we conclude that the failure of a
detector to simultaneously capture the narrow linewidth and
the antibunching really means that these do not actually
jointly exist.

In the following we will discuss and generalise a scheme
which we have recently proposed [33] and that achieves such
a joint narrow and antibunched emission, in the sense that a
detector does collect its light with these two attributes intact.
As we will focus on antibunching and spectral width, we can
support our analysis of the detection process through a
‘sensor’ that acts as a filter for the emitted light [74]. Theo-
retically, this is included through the vanishing coupling of a
bosonic field with annihilation operatora to the dynamics
of the two-level system, by adding the Hamiltonian =Ha

s s+( )† †g a a to equation (1) and then taking the limit g 0,
which allows the dynamics of the two-level system to be
independent from that of the sensor. The bandwidth of the
sensor is given by its decay rateΓ and is included as an extra
term  rG( )2 a in the master equation (2). For quantities such
as populations, which would vanish with g 0, one should
use instead the more complete but also heavier cascaded
formalism, which we have shown is equivalent to the more
lightweight sensor method as far as correlations are concerned
[84]. The main point of this theoretical shortcut is that instead
of considering the light emitted by a system, one can consider
instead the filtered light and this is enough to describe the
process of detection, as long as the detector would have the
same spectral width as the filter. We will therefore be
speaking of filtering for the light emitted by the two-level
system, which should be understood as the effect of its
detection from a detector with the corresponding bandwidth.

When the emission of the two-level system is filtered in
frequency, the tails of the incoherent Lorentzian are trimmed
out and this spoils the perfect antibunching, that arises from an
interference between the coherent and incoherent components
[33]. This is even more salient with detuning, when the two-
level system is detuned from the laser. In this case, the inco-
herent part of the spectrum splits into two peaks atw  DsL

that surround the coherent part at wL. It is, then, even more
evident that filtering in frequency breaks the balance between
the incoherent and coherent fractions. Such an interference, that

yields the perfect antibunching can be restored simply by
reinstating the original proportion, i.e. the perfect antibunching
can be maintained after filtering by reducing the surplus of
coherent emission that passes in its entirety through the filter, if
the latter one is at resonance with the laser. This can be easily
achieved since a coherent field can be scaled at will through
interferences, in our case, destructive interferences. Our
scheme thus consists of interfering at a beam splitter the light
emitted by the two-level system with a coherent field
b bº f∣ ∣ei , whose amplitude and phase need to be fixed ade-
quately to provide the exact compensation. In this configura-
tion, the Hamiltonian for our laser-corrected source becomes

b
s s

= + D - -
+ +

s
f f-∣ ∣( )

( ) ( )

† †

† †
H H a a ir e a e a

gt a a , 5
a

i i

whereHσ is the Hamiltonian in equation (1), t andr are the
transmission and reflection coefficients of the beam splitter (the
reflection coefficient is preceded by a factor i, which accounts
for the phase shift gained by the reflection in the beam splitter),
and w wD = -( )a a L is the detuning between the detector and
the driving laser. The amplitude of the coherent fieldb∣ ∣ can be
parameterised as a fraction of the coherent field that the
sensor receives from the two-level system, i.e. we may write

 b
g

b
g

=
W

¢ =
Ws

s

s

s
∣ ∣ ∣ ∣ ( )g

t

r
g, or equivalently , 6

where we have also definedb b¢ =∣ ∣ ∣ ∣( )r t , to avoid carrying
the parameters of the beam splitter, which only renormalize the
observables but do not change the physics involved. With these
definitions we can now compute any observable in the steady-
state to leading order inWs, such as the total intensity detected
by the sensor(its population):

 g g gs g f f

g g

= á ñ

=
W + + D + - D

G + D + D
s s s s s s

s s s

( )

[ ( ) ( )]
( )( )

†
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n a a

g t4 4 4 4 cos 2 sin

4 4
.

a

a

2 2 2 2 2 2 2

2 2 2 2

Although this is not immediately apparent from the analytical
expression(7), the scheme leads to a decrease of the single-
photon repetition rate, which is the price to pay to combine
strong antibunching with subnatural-linewidth emission. This
can be well understood as the destructive interference remov-
ing the detrimental excess of coherent signal. The quantum
signal is of greater quality, but in a smaller quantity.

As a final note, we observe that the interference between
the incoherent and coherent fractions, responsible for the
perfect antibunching, takes place regardless of the detuning
between the laser and the two-level system. That is to say, the
interference takes place even when there would seem to have
no spectral overlap between the two fractions, that can be
arbitrarily separated. This is another manifestation of the
misconception of a quantum quantity existing without being
observed. Namely, without frequency-resolved detection, the
measurement does consider that all the photons are identical,
being completely blind to their frequency, so it is mistaken to
assume that their detuning leads to no spectral overlap. When
the spectral properties of the photons are included, so that one
can indeed evidence the spectral separation of the coherent
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and incoherent fractions, their joint presence within the
detector bandwidth indeed becomes key, as we show in what
follows.

3. Results

The two-photon correlations detected in various spectral
widths are obtained from the steady-state solution of the
master equation (2) with Hσ replaced by the Hamiltonian in
equation (5) and with the added Lindblad term  rG( )2 a .
Although these correlations can be obtained in closed-form,
they are too cumbersome to be written here. Instead, we will
provide the particular cases (i)with detuning but no dephas-
ing and (ii)at resonance but with dephasing. The full case, of
which we will show one case graphically, brings little more
insights, so treating these separately is enough to reach gen-
eral conclusions. We consider first the case without
dephasing.

3.1. No dephasing

In the case of no dephasing, but allowing for some detuning,
either between the driving laser and the two-level system or
between the detector and the two-level system (or both), the
detected two-photon correlations are given by, to leading
order in the driving strength:
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where we have definedg gº + Gs+ , D º D + Ds+ a and

gG º + D˜ 4c c c
2 2 2 for s= +c , . From this expression, it is

easy to find particular cases of interest: perfect antibunching,
when the numerator becomes zero, and perfect superb-
unching, when the denominator becomes zero.

The condition to vanish the numerator, and therefore to
produce perfect antibunching, is given by


g

g
= -

+ D


G + D
G + D

s
f

s s

-

+ +

⎛
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⎞
⎠⎟ ( )e

i
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2

2
1

2

2
, 9

i
a

which generalizes the expression given in equation (10) of
[33]. Since a real phasef can always be found so that
equation (9) is a real positive number, the condition for per-
fect antibunching is always satisfied. The condition that
cancels equation (8) also yields the suppression of the state
with two photons in the detector, as we show in the appendix
through a wave-function approximation. In the most natural
configuration where the laser is resonant to both the sensor
and the two-level system, equation (9) reduces to the

expressions of [33]:


g

f p= 
G

G +
=

s
 +

⎛
⎝⎜

⎞
⎠⎟ ( )2 1 and . 102,

On the other hand, the denominator of equation (8), that
is, the intensity of the total signalá ñ†a a , vanishes when one
sets the phasef and amplitude of the interfering laser to
satisfy

f
g

f= -
D

= -s

s
( )tan

2
and 2 cos . 11

Note that unlike for antibunching, this condition to obtain
superbunching is independent of the detector properties, both
frequency and resolution. The reason is that it is always
possible for the external laser to suppress completely the
coherent fraction, which in this case dominates the total
intensity, through destructive interference. This happens
already at the beam splitter, regardless of the detector prop-
erties. It is only a matter of adjusting the phase and intensity
of the external laser. In this case, ( )ga

2 diverges (to first order in
the driving strength, so that higher order terms would produce
huge but finite values of ( )( )g 0a

2 ). Such a strong superb-
unching corresponds to the statistics of the quantum fluctua-
tions, which are the only signal that remains when fully
removing the coherently scattered fractions. The incoherent
part of the signal is wildly fluctuating and even has notable
squeezing properties, that are discussed elsewhere [85].
Therefore, photon emission is not occurring in the form of
photon bundles and cannot be Purcell-enhanced, so that
prospects for applications asN-photon sources are limited.
Also, we mention that infinite bunching has already been
reported before; it occurs for instance with Fock states in
bosonic cascades [86].

A full map of ( )( )g 0a
2 as defined by equation (8) is shown

in figures 1(a)–(c) for spectral widths of the detector ranging
from essentially full-bandwidth, panel(a), the linewidth of
the two-level system, panel(b) and with sub-linewidth reso-
lution, panel(c). In the first case, without frequency filtering,
perfect antibunching is obtained without any laser correction,
that is, for = 0 and independently of the phase. This cor-
responds to the case considered in the literature [76, 77], but
this comes at the cost of the spectral width: the δ-width of the
laser is completely washed out by the detector. For a detector
spectrally matched to the emitter, shown in(b), antibunching
is considerably reduced by the detector (to »( )( )g 0 0.25a

2 ).
Keeping the same linewidth, antibunching can be restored by
the interfering laser fulfilling conditions(10), restoring an
exact antibunching, =( )( )g 0 0a

2 , to first order in the driving.
Going to sub-natural linewidth with a detector spectrally
matched to gs0.2 , shown in panel(c), one finds that anti-
bunching is now almost completely gone in absence of the
laser correction, »( )( )g 0 0.7a

2 , but can again be fully restored
with the laser correction. In all cases, in between the two
conditions for antibunching, one can see the superbunching
at = 2. Note that, as the linewidth is made narrower, the
conditions for antibunching, equation (10), come closer to the
conditions for superbunching, equation (11). So while this
effect could be pursued down to extremely narrow linewidths,
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at no cost for the antibunching, some restrictions would arise
from the stability of the driving laser, as energy fluctuations
would take the system from the condition for perfect anti-
bunching to the condition for superbunching. Panels(d)–(f)
show in blue lines transverse cuts atf p= of panels(a)–(c),
and in red and green lines the corresponding higher-order
correlators ( )ga

3 and ( )ga
4 , respectively. This shows how,

although both 2, from equation (10) yield an exact can-
cellation of ( )ga

2 , the higher order correlations remain sub-
Poissonian in the vicinity of only -2, (which corresponds to
the condition to obtain a ‘conventional antibunching’ [85]).

3.2. Dephasing

We now turn to the impact of dephasing, which is detrimental
to photon correlations, but can still be corrected to a con-
siderable extent through our process, although not perfectly
anymore. In the case of dephasing alone, where both the two-
level system and the detector are resonant with the driving
laser, the two-photon correlations are given by
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where we have used the notation g gG = +f s f and g =+
g + Gs .

The general case that also includes detuning is shown in
figure 2. In this case, the laser is detuned from the two-level
system, while the detector is set either at the frequency of the
two-level system (panels (a) and(c)) or at the frequency of
the laser (panels (b) and(d)). The top row of figure 2 is given
by equation (8) while the bottom row, for which a closed-
form expression exists but is to bulky to be written here, is
only shown graphically. The filter linewidth, or, equivalently,
the bandwidth of the detector, has been taken to match one
fifth of the emitter linewidth. Therefore, figures 2(a) and (b)
are the detuned versions of figure 1(c). Using this panel as a
reference, one can see the impact of dephasing (spoiling the
correlations) and detuning (maintained but for different laser
corrections). Actually, the condition for superbunching is
independent from the detuning between the detector and the
driving laser, in agreement with equation (11), unlike the
condition for antibunching. In fact, when the detector is
resonant to the laser, both being detuned from the emitter, the
conditions for perfect antibunching do not occur at the same
phasef. Therefore, in a detuned measurement, the correla-
tions are easier to observe when the sensor is resonant to the
two-level system.

While in absence of dephasing (equation (8)), correla-
tions can range from exactly zero to infinity, equation (12)
shows that in its presence, they can only be pushed to finite
values, both for bunching and antibunching. Although the full
expressions for those limiting values can be found, they are
too bulky to be written here and are instead plotted in
figures 2(e) and (f), respectively. The loss of antibunching due
to dephasing cannot be compensated exactly by the interfer-
ing laser up to the point where, for strong enough dephasing,
no antibunching at all can be maintained. Nevertheless, the
laser correction still brings considerable improvement on the
case without interference, which is also, of course, affected by
dephasing. The intensity that yields the best antibunching

Figure 1. Filtered two-photon correlations at resonance and without dephasing, as a function of the parameters (intensity) andf (phase) of
a superimposed interfering laser. In all the panels we setgs as the unit,D = D =s 0a and g =f 0. The detector linewidth decreases in from

(a)–(c) as indicated on each panel.
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is found by minimising equation (12), which does not provide
a simple closed-form expression, but can be readily found
numerically. The minimum antibunching obtained this way is
shown in figure 2(f).

As in the case without dephasing, superbunching is found
for particular interference conditions:


g

f=
G + D

= -
D
G

s

f s

s

f
( )2

4
and tan

2
, 13

2 2

which are independent of the detector properties (detuning
and bandwidth). These correspond, again, to the complete
suppression of the coherent fraction (á ñ =a 0), but, this time,
not of the total signalna, which now also has some incoherent
component to leading-order inWs. The conditions for
superbunching are independent of the detector properties for
the same reason as in the case without dephasing, but now the
value of superbunching does depend on both of the detector
properties, Da andΓ, as shown in figure 2(e). In general,
frequency filtering deeply affects the statistics of any signal
and, in this case, of quantum fluctuations (the incoherent
component). Since we have fully removed the coherent part,
one can check that quantum fluctuations behave as any
incoherently pumped source, fulfilling =G

( )glim 2a0
2 [74].

3.3. Correlations in time

While the value of the zero-delay correlation between photons
is usually the one considered to quantify the sub-Poissonian
character of a source, the correlations between photons
detected with a time differenceτ are also important. In part-
icular, fast oscillations in correlations can be difficult to
resolve and average out the result. In [33], we showed that in
the case without dephasing and in resonance, when the loss of
antibunching due to filtering is corrected with an external
laser, the t( )( )ga

2 displays a plateau of perfectly antibunched
photons for up to t g» s∣ ∣ 2.5 . This actually confers to such
sources an even greater single-photon source character. As
can be expected, correlations in time are affected by
dephasing as well as by the detuning between the two-level
system, the sensor and the laser. Such a characteristic profile
is shown as filled blue lines in figure 3, to which we compare
the cases treated in this text. Panels(a) and(b) show the
effect of detuning (without dephasing) and Panel(c) shows
the effect of dephasing (without detuning). In(a) the detector
is resonant with the two-level system, and both are detuned
from the driving laser, while in(b), the detector is resonant
with the laser, and both are detuned from the emitter. In green
lines are shown the correlations for the given parameters
featured in inset while red lines show the result without the
laser correction, i.e. with = 0.

Figure 2. (a)–(d) Two-photon correlations as a function of the parameters of the interfering laser when the laser is detuned from the two-level
system, in absence (top row) and in presence (bottom row) of dephasing. In the left column, the detector is resonant to the emitter while in the
right column, it is to the driving laser. Dephasing spoils the perfect antibunching, and it is particularly detrimental in the case where the
sensor is set in resonance the two-level system, in which case the dephased correlations are completely blurred. Without dephasing, one may
still find the condition for that provides perfect antibunching. In panels(a)–(d) we set gG = s 5. (e), (f)Maximum and minimum value
of ( )ga

2 when the two-level system, the sensor and the laser are in resonance. Namely, for each dephasinggf and sensor linewidthΓ, we

optimize the correlation in equation (12) over all the values of the intensity and the phase of the external laser andf, respectively. In
panel(f) we also show in dashed-dotted white lines the isolines for the minimum correlations that can be obtained without the correction (i.e.
with  = 0).
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Remarkably, the case where the detector is detuned from
the laser, figure 3(a), displays fast oscillations with a fre-
quency given by the detuning Δa. The lower bound of the
oscillations is approximately given by the aforementioned
antibunching plateau and the zero delay correlations are still
compensated exactly (as previously discussed), but the pla-
teau itself becomes tainted. This means that, although the
configuration with the detector in resonance to the emitter
could seem the more natural or appealing one, the fast
oscillations in its delay correlations makes it potentially
problematic. Even when the driving laser is at resonance with
the emitter, oscillations occur if the detector is somewhere
else. In order to avoid them, detection should be done, in this
case, at the frequency of the laser. These oscillations are
unrelated to the specific physics described in this manuscript
but are a general beating feature of any dynamics that
involves several frequencies. For instance, looking at the
correlations from a simple harmonic mode under incoherent
thermal driving, and setting the detector out of resonance, we
find oscillations in the second order coherence function and
other correlators. Such oscillations dominate the temporal
correlations whenever one detects light out of resonance from
the spectral peaks, whatever source is being considered.
Conversely, when the detector is resonant to the laser,
panel(b), the plateau of antibunching is still present, albeit for
a shorter time, and the correlations do not display any oscil-
lations. It is also shown how the laser-correction makes a
huge improvement on the antibunching as compared to the
standard case which features almost no antibunching. How-
ever, a very large detuning between the two-level system and
the laser(not shown) washes out the plateau and the corre-
lations become simply t = - t-G( ) ( )( )g e1a

2 2 2, which cor-
responds to the correlations of a two-level system of
linewidthΓ driven incoherently in the regime of low
excitation.

In figure 3(c), it is shown how the zero-delay correlation
of the dephased two-level system cannot be compensated
exactly in presence of dephasing, as already stated, but
otherwise suffers little in term of its plateau or coherence
time. More importantly, it remains largely improved as
compared to the case without the interference, with a value
of »( )( )g 0 0.05a

2 for a dephasing rate of 10% the emitter

decay rate, whereas it is only »( )( )g 0 0.73a
2 without the laser

correction. Furthermore, the measured linewidth remains well
below the natural (but broadened by the dephasing) linewidth
of the two-level system.

3.4. Performance of the laser-corrected subnatural-linewidth
single-photon source

Further to the zero-delay correlation between photons, one
can classify single-photon sources through their suppression
of multi-photon emission at all orders, rather than only the
second-order one [87]. This allows to classify and compare a
wide range of sources beyond their mere ( )g 2 and thus
avoiding that a squeezed state, that can have high probability
of three-photon emission, appears to be a better single-photon
source than a two-level system. Namely, we classify single-
photon sources by their minimizing the ‘N-norm’ of all the jth
order correlations up to = +j N 1 [87]:

å=
=

+

 
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )( ) ( )g g . 14a

k
N

j

N

a
j N

N

2

1 1

An insightful parameter for comparison is the linewidthΓ of
the detector. Indeed, in the ideal caseG  ¥, many sources
trivially exhibit an exact =∣∣ ∣∣( )g 0a

k
N and thus cannot be

discriminated, while this can be done through their asymp-
totic behaviour towards this limit. Furthermore, since in a
realistic setup, one deals with a finite-bandwidth detector, it is
interesting to see the evolution of this criterion as a function
ofΓ. For our source in particular, which chief quality is its
sub-natural linewidth, it becomes important to assess whether
it still performs well in this regime. We will see that it is
indeed the best source.

Although the criterion in equation (14) requires the
computation of the photon correlation to all orders, oftentimes
the N-norm converges for »N 3 (i.e. requiring up to ( )ga

4 ). In
figure 4 we use the ‘3-norm’ ( ( )ga

k
3) to compare the beha-

viour of our laser-corrected subnatural-linewidth source (solid
blue line) to the epitome of single-photon sources: a two-level
system driven either with an incoherent pump (solid red line)
or with a coherent pump in the Heitler regime (solid green
line). As is well known, the coherent driving provides better
single-photon source performances than its incoherent coun-
terpart. Our scheme, thanks to its combined multi-photon
suppression and sub-linewidth emission, greatly outperforms

Figure 3. Time-resolved filtered two-photon correlations in the various configurations discussed in the text. The filled-blue line is the case at
resonance and without dephasing. Panels(a) and(b) show the impact of various detunings without dephasing and Panel(c) shows the impact
of dephasing at resonance. In green the best correction that can be achieved with an interfering laser, in red the uncorrected case. In all
cases gG = s 5.
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the two-level system in both regimes, by several orders of
magnitude in the region of  gG s and retains its advantage
down to about  gG s 5, according to this criterion. It
remains in fact a much better single-photon source according
to ( )g 2 alone, as the Heither antibunching does not survive
sub-linewidth filtering [33]. However, in the stricter sense of
suppressing all-order correlations, the laser-corrected source
gets spoiled due to high three-photon bunching [33] when
filtering is too narrow. Overall, the laser-corrected source thus
proves to be the best single-photon source known to date
down to a linewidth a fifth of the radiative linewidth of the
original two-level system.

We conclude with the impact of dephasing on the per-
formance of this optimum source. We have already com-
mented how, the scheme relying on an interference effect with
a coherent (well-defined phase) field, it is particularly sensi-
tive to dephasing. The 3-norm criterion is severe in this
regard, as seen in figure 4, where the impact of 20%
dephasing rate (g g=f s 5) is shown as dashed lines for all
the three types of source. The dephasing hardly worsens
the conventional schemes’ ability to suppress multi-photon
emission (dashed black and dashed white lines on top of
the solid red and solid green lines, respectively). Conversely,
the same dephasing rate affects notably the behaviour of the
laser-corrected source, although even forΓ/γσ as small
as0.3, the source performs better than the two-level systems.
Therefore, while it is much more fragile to dephasing, its
performance is so much greater than other schemes that it still

remains superior to them over the ranges of greatest relevance
and interest.

4. Conclusions

We study the laser-corrected scheme that produces joint
antibunching and subnatural linewidth emission [33]. Not
only does this scheme make these properties hold simulta-
neously, it also produces perfect antibunching to first order
in the driving (that is, =( )( )g 0 0a

2 ) which is otherwise pos-
sible only by integrating all frequencies, and features a
plateau in the time-delayed photon correlations, making
such a single-photon source more effective at suppressing
coincidences. Its performance has been further demonstrated
by turning to a stricter criterion to quantify single-photon
sources, taking into account photon correlations of higher
orders. This allows us to compare it to a wide class of single-
photon sources with the result that the laser-corrected source
outperforms the others by several orders of magnitudes for
detectors’ linewidth larger than the radiative linewidth of the
two-level system, and still remains the best one in the sub-
natural linewidth regime. There, according to the 3-norm
criterion, its superiority as compared to simple resonance
fluorescence is less compelling, but this is due to a large
three-photon component, on top of still perfect two-photon
antibunching, while resonance fluorescence in turn is spoiled
already at the two-photon level. We have also shown that
different conditions from the interfering laser produce
instead perfect superbunching (that is, = ¥( )( )g 0a

2 to first
order in the driving).

We have specifically considered the presence of
dephasing and of a detuning from the emitter with either the
driving laser and/or the detector. In presence of detuning, we
find that perfect antibunching can always be enforced by the
interference, but with strong time oscillations of the statistics
when the detector is detuned from the driving laser. These
oscillations disappear when the detection is made at the fre-
quency of the laser, hence favouring this configuration. In the
presence of dephasing, which one can expect to be particu-
larly detrimental since the scheme relies on an interference
with a coherent source of well-defined phase, we confirm that
antibunching is significantly spoiled and only finite values
can be obtained. However, the improvement as compared to
the non-corrected single-photon source is so great in the first
place as to be able to still withstand the very detrimental
effects of dephasing. Multi-photon suppression remains
better than from two-level systems under either coherent or
incoherent driving for detectors with linewidth down
to gG » s0.3 . This makes the laser-corrected single-photon
source the best cw scheme known to date.
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Appendix. Wavefunction approximation method at
vanishing pumping regime

In the context of this work, the wavefunction approximations
[88] consist of assuming that the state of the system com-
posed by two fields, with annihilation operatorsξ andc fol-
lowing either pseudo-spin or bosonic algebra, can be
approximated by a pure state, which reads in the Fock state
basis

 å åyñ = ñ ñ º ñx∣ ∣ ∣ ∣ ( )n m n m, , A.1
n m

nm c
n m

nm
, ,

wherenm are the probability amplitude of havingm photons
in the field of operatorξ andn photons in the field of
operatorc. The summation extends over the boundaries of
the respective spaces, which is1 for a two-level system
and¥ for a bosonic one, which in practice is truncated toN.
Since the dynamics of the system is given by the master
equation

år r r¶ = + G[ ] ( ˜ ) ( )i H, 2 , A.2t
k

k jk

whereH is the Hamiltonian of the system and assuming the
dissipation in the form of ‘jump operators’ jk at ratesG̃k, the
dynamics of the wavefunction is given by Schödinger
equation

y y¶ ñ = - ñ∣ ∣ ( )iH , A.3t eff

whereHeff is a non-hermitian Hamitonian constructed
as = - å G̃ †H H i j jk k k keff , and the coefficients evolve as

 å¶ = - á ñ∣ ∣ ( )i n m H p q, , . A.4t nm
p q

pq
,

eff

In our particular case, in which we describe the excita-
tion of a sensor (a harmonic oscillator) by the emission of a
two-level system, which in turn is driven in the Heitler
regime by a laser, the Hamiltonian is the one given in
equation (5) of the main text:

s s s s
s s b

= D + D + W +
+ + - -

s s
f f-

( )
( ) ∣ ∣( ) ( )

† † †

† † †
H a a

gt a a ir a e ae . A.5
a

i i

Here the two-level system is driven with intensityWs and is
coupled to the sensor with strengthg, the sensor is also
driven by a fieldb fei and the detuning between the two-
level system (resp. sensor) and the driving laser is given
byDs (resp. Da). These fields are attenuated by the trans-
missiont and reflectionr coefficients of the beam splitter in
which they interfere. Considering that the two-level system
and the sensor have decay ratesgs andΓ, respectively, the
effective Hamiltonian that describes the dynamics in the

wavefunction approximation reads4

g s s= - + Gs( ) ( )† †H H
i

a a
2

, A.6eff

whereH is the Hamiltonian in equation (A.5). Replacing the
effective Hamiltonian in equation (A.6) in the expression in
equation (A.3), we obtain the differential equations for the
coefficients of interest:

b
g

¶ = W + + + D -s
f

s
s- ⎜ ⎟⎛

⎝
⎞
⎠∣ ∣

( )

i C gtC ir e C i C
2

,

A.7

t
i

01 10 11 01
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G

f
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f-

⎜ ⎟⎛
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⎠
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( )

i ir e gt ir e

i

2

2
,

A.8

t
i i

a
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b
g

¶ = W - +

+ D + D -
+ G

s
f

s s
s⎜ ⎟⎛

⎝
⎞
⎠

∣ ∣

( )

i ir e gt

i

2

2
, A.9

t
i

11 10 01 20

11

   b¶ = - + D -
Gf ⎜ ⎟⎛

⎝
⎞
⎠∣ ∣

( )

i gt ir e i2 2 2
2

,

A.10

t
i

a20 11 10 20

where we have assumed that the driving to the two-level
system is low enough so that the states with three or more
excitations can be safely neglected, and that the driving laser
is resonant to both the two-level system and the sensor.
Assuming that the coherent field that drives the sensor can be
written as a fraction of the field that drives the two-level
system, as in equation (6), and to leading order in the cou-
pling and the driving intensity of the two-level system, the
solution to equations (A.7)–(A.10) is


g

= -
W

+ D
s

s s
( )i

i

2

2
, A.1101


g g

g g
= -

W + + D
G + D + D
s s s s

f

s s s

[ ( ) ]
( )( )

( )gt i e

i i

2 2 2

2 2
, A.12

i

a
10


g g

g g g
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G + D + D + D
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f
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+ +

+ +
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( )igt i e

i i i
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, A.13

i

a
11

2


 g g g g

g g g
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W + + D + + D

G + D + D + D
s s

f
s

f
s s

s s s

+ +

+ + ( )

{ ( ) [ ( )]}
( ) ( )( )

A.14

g t i e e i

i i i

2 2 4 2 4 2

2 2 2
.

i i

a

20

2 2 2 2

2 2

The population of both the two-level system and the sensor,
as well as ( )ga

2 can be obtained from the coefficients in
equations (A.11)–(A.14) as = ∣ ∣na 10

2, á ñ =s ∣ ∣n 01
2 and

 = ∣ ∣ ∣ ∣( )g 2a
2

20
2

10
4, respectively. The cancellation of the

coefficient20, and therefore of ( )ga
2 , yields the condition on

the attenuation factor

4 The dephasing of the two-level system enters the description as an extra
Lindblad term in the master equation: g rf s s( ) †2 , wheregf is the rate of
dephasing. However, the effect of this term is the decoherence of the state of
the two-level system, which affects only the off-diagonal elements of the
density matrix of the two-level system, and thus cannot be described through
a wavefunction approximation.
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g

g
= -

+ D


G + D
G + D

s
f

s s

-

+ +

⎛
⎝⎜

⎞
⎠⎟ ( )e

i

i

i

2

2
1

2

2
, A.15

i
a

in agreement with equation (9) of the main text.
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