Continuous distributions
Poisson distribution
$p \ll 1$ and $n \gg 1$
$\lambda=n p$:finite
Prob. distribution
$P(k) \quad P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$
PHF: Probability mass function
$:=$ Probability distribution

$$
\langle X\rangle=\lambda
$$

Let's consider the care $\lambda=100$

$$
P(X=k)=e^{-100} \frac{100^{k}}{k!}
$$

What's the probability that $\overline{\bar{X}}=\lambda$

$$
P(I=100)=e^{-100} \frac{100^{100}}{100!} \leq 1
$$

$100!=100 \cdot 99 \cdot 98.97 \cdots 1=$? Very Large $100^{100}=$? numbers

$$
e^{-100} \cong 3.72 \times 10^{-44}
$$

we could fit this figure with a simpler function \Rightarrow Gaussian or Normal distribution

$$
f(k)=\frac{1}{\sqrt{2 \pi} \mu} \exp \left[-\frac{(k-\mu)^{2}}{2 \mu}\right]
$$

$$
\exp [x]=e^{x}
$$

If we select $\mu=\lambda$

$$
f(100)=\frac{1}{10 \sqrt{214}} \approx 0.03984 \rightarrow 3.98 \%
$$

Playing with dices

with 2 dices

$$
1+1=2 \rightarrow 6+6=12
$$

with 3 dices

$$
1+1+1=3 \rightarrow 6+6+6=18
$$

The more dices we throw, the smoother the histogram (so, the $P(k)$) will be

In the limit of infinite dices, the distribution becomes exactly a Gaussian. It even works even If each random variable is not uniform, as long as they are independent

Central limit theorem: the sum of independent random variables tends to a Gaussian
In general, the Gaussian is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

1. The mean, μ
2. The variance, σ^{2}
$\sigma:$ standard deviation
Interpret $f(x)$ as a density of probability for a continuous variable

Now $\bar{X} \in \mathbb{R}$; is a continuous variable. $f(x)$ is not a probability $\Rightarrow f\left(x_{0}\right)>1$ What's the probability of finding $x_{0} \leq X \leq x_{0}+\Delta x$

$P\left(x_{0}\right)=f\left(x_{0}\right) \Delta x:$ Probability that the continuous variable X will return a value between x_{0} and $x_{0}+\Delta x$
we can only ask the probability to get a number in a window
For $\Delta x \rightarrow d x$: differential of $x \rightarrow d x \ll 1$

$$
P\left(x_{0}\right)=f\left(x_{0}\right) d x
$$

$$
P\left(x_{0} \leq X \leq x_{1}\right)=\int_{x_{0}}^{x_{1}} f(x) d x
$$ we are adding probabilities $f(x) d x$

Normalization $\int_{-\infty}^{+\infty} f(x) d x=1$
The probability to find $-\infty<X<\infty$ is 100% Averages:

$$
\begin{aligned}
& \langle X\rangle=\sum_{k} k P(k): \text { discrete variable } \\
& \langle X\rangle=\int_{-\infty}^{+\infty} x f(x) d x: \text { continuous variable }
\end{aligned}
$$

Variance

$$
\left\langle\underline{x}^{2}\right\rangle=\int_{-\infty}^{+\infty} x^{2} f(x) d x
$$

In general $g(x)$: a function of X

$$
\langle g(x)\rangle=\int_{-\infty}^{+\infty} g(x) f(x) d x
$$

