Random Variables

Deterministic objects
\rightarrow variable x : fixed in time
x : \# of patients at hospital $x(t): \sharp$ of patiens depending on t

Non-deterministic objects
\rightarrow random variable X: outcome of a dice
Throwing a dice 8 times:

$$
\bar{X}=1,5,4,6,5,3,1,2
$$

Probabilities remain constant
$P(n):$ probability of getting n as an outcome

$$
\begin{aligned}
& p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1 / 6 \\
& \sum_{n=1}^{6} p(n)=p(1)+p(2)+\cdots+p(6)=1 \quad \text { Probability } \\
& \text { is normalized }
\end{aligned}
$$

normalized: sum of all the probabilities is 1
If $p(n)$ is the same for every $n \Rightarrow$ Uniform

$$
\left.\begin{array}{l}
\text { Tossing a coin: }\left\{\begin{array}{lr}
\text { Heads }(H) \Rightarrow-1 \\
\text { Tails }(\tau) \Rightarrow 1
\end{array}\right. \\
p(H)=p(\tau)=1 / 2
\end{array} \quad p(H)+p(\tau)=1\right\} \text { Uniform }
$$

For a biased coin: $p(-1)=0.6$ thus $p(1)=0.4$
The prob. distributions MUST be normalized
Dice: $\sum_{n=1}^{6} p(n)=1$
This is true regardless of the particular values of $p(n)$.
coin: $\sum_{n=-1,1} p(n)=1$
In general : $\sum_{n} p(n)=1$
Average
\rangle : statistical average (mean)
$\langle X\rangle$: Statistical avercige of the random variable X.
Dice:

n	$p(n)$	
1	$1 / 6$	
2	$1 / 6$	$\langle X\rangle$
3	$1 / 6$	$\sum_{n=1}^{6} n p(n)$
3	$1 / 6$	
4	$=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+\cdots+6 \cdot \frac{1}{6}$	
5	$1 / 6$	
6	$1 / 6$	

Coin:

$$
\begin{array}{ccc}
n & p(n) & \\
-1 & 1 / 2 & \langle x\rangle=\sum_{n=-1,1} n p(n)=0 \\
1 & 1 / 2 & \text { What is }\langle x\rangle \text { if } p(-1)=0.6 \text { ? }
\end{array}
$$

Multiple random variables
X: one dice \bar{Y} : another dice
$P_{X}(n)=1 / 6 \quad$ for $n=1 \ldots, 6 \quad P_{Y}(n)=1 / 6$ for $n=1, \ldots, 6$
They will provide different values everyture we throw them:

$$
(X, \bar{Y})=(1,3),(2,5),(6,6),(1,4) \ldots
$$

In general the distribution for X. and I are different.
Sometimes, you are interested in $Z=\bar{X}+\bar{Y}$

$$
Z=4,7,12,5 \ldots
$$

I is a random variable which is a function of two random variables

$$
\langle z\rangle=?
$$

Average is a linear application

$$
\langle\alpha X+\beta Y\rangle=2\langle X\rangle+\beta\langle Y\rangle \quad \alpha, \beta \in \mathbb{C}
$$

Two fair dices $\langle\underline{X}\rangle=\langle\bar{Y}\rangle=3.5 \Rightarrow\langle Z\rangle=7$.
I and I were independent
h the outcome of \mathcal{X} is independent from the outcome of Y
\rightarrow the two variables are uncorrelated

Let's consider $I=7-X$
I: opposite side of the dice correlation

$$
\begin{aligned}
& \bar{X}=1,6,3,5,2,3,4 \\
& I=6,1,4,2,5,4,3
\end{aligned}
$$

Functions of random variables
For a deterministic variable $f(x)=x^{2}$
For a random variable $I=f(X)$

$$
Y=X^{2}
$$

Com:

$$
\begin{aligned}
& X=-1,1,1,1,-1,-1,1,1 \\
& I=1,1,1,1,1,1,1,1
\end{aligned}
$$

For $Y: P_{Y}(n)=\delta_{n, 1} \quad \delta_{n, 1}= \begin{cases}1 & n=1 \\ 0 & \text { otherwide }\end{cases}$
Dice:

$$
\begin{aligned}
& \bar{x}=1,3,5,2,1,1,3,6 \\
& y=1,9,25,4,1,1,9,36
\end{aligned}
$$

What is probability that $\bar{Y}=7$?

$$
\langle Y\rangle=\left\langle\bar{X}^{2}\right\rangle=\sum_{n} n^{2} p(n)
$$

Show that for the fair dice $\left\langle\bar{x}^{2}\right\rangle=\frac{91}{6}$
Note: $\left\langle x^{2}\right\rangle \neq\langle x\rangle^{2} \quad\left\langle x^{2}\right\rangle \geq\langle x\rangle^{2}$
Dice: $\left\langle\bar{X}^{2}\right\rangle=91 / 6 \approx 15.16$

$$
\langle x\rangle^{2}=(7 / 2)^{2} \approx 12.25
$$

$$
\operatorname{Var}(X) \equiv\left\langle X^{2}\right\rangle-\langle X\rangle^{2} \geq 0: \text { Variance of }_{X}
$$

- The distance from X to the mean valve $\langle x\rangle$ $\bar{X}-\langle\bar{X}\rangle$: another random number
- $(\underline{X}-\langle X\rangle)^{2}$: another nandom number

$$
\begin{aligned}
& \operatorname{Var}(\bar{X})=\left\langle(\bar{X}-\langle\bar{x}\rangle)^{2}\right\rangle \\
& \cdot(\bar{X}-\langle\bar{x}\rangle)^{2}=\bar{x}^{2}-2\langle\bar{x}\rangle \bar{X}+\langle\bar{x}\rangle^{2} \\
& \begin{aligned}
\left\langle(\bar{X}-\langle\bar{x}\rangle)^{2}\right\rangle & =\left\langle\bar{x}^{2}-2\langle\bar{x}\rangle \bar{X}+\langle\bar{x}\rangle^{2}\right\rangle \\
& =\left\langle\bar{x}^{2}\right\rangle-2\langle\bar{x}\rangle\langle\bar{x}\rangle+\langle x\rangle^{2} \\
& =\left\langle\bar{x}^{2}\right\rangle-2\langle\bar{x}\rangle^{2}+\langle\bar{x}\rangle^{2} \\
& =\left\langle\bar{x}^{2}\right\rangle-\langle\bar{x}\rangle^{2}
\end{aligned}
\end{aligned}
$$

standard deviation $\sigma_{x}=\sqrt{\operatorname{Var}(x)}$
You can also obtain $\left\langle x^{3}\right\rangle \Rightarrow$
In general $f(\bar{X})=Y$

$$
\begin{aligned}
& \langle Y\rangle=\langle f(X)\rangle=\sum_{n} f(n) p(n) \\
& f(\bar{X})=e^{-X} \Rightarrow\langle f(x)\rangle=\sum_{n}^{\prime} e^{-n} p(n) \\
& f(\bar{X})=\tan (\bar{X}) \Rightarrow\langle f(x)\rangle=\sum_{n} \tan (n) p(n)
\end{aligned}
$$

