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Abstract
Resonancefluorescence—the light emittedwhen exciting resonantly a two-level system—is a popular
quantum source as it seems to inherit its spectral properties from the driving laser and its statistical
properties from the two-level system, thus providing a subnatural-linewidth single-photon source
(SPS). However, these two qualities do not actually coexist in resonance fluorescence, since an optical
target detecting these antibunched photonswill either be spectrally broad itself and not benefit from
the spectrally narrow source, ormatch spectrally with the source but in this case the antibunchingwill
be spoiled.Wefirst explain this failure through a decomposition of the field-emission and how this
gets affected by frequency resolution.We then showhow to restore the sought joint subnatural
linewidth and antibunched properties, by interfering the resonance fluorescence outputwith a
coherent beam.We finally discuss how the signal that is eventually generated in this way features a new
type of quantum correlations, with a plateau of antibunchingwhich suppressesmuchmore strongly
close photon pairs. This introduces a new concept of perfect SPS.

1. Introduction

Resonance fluorescence has always been a central topic in quantumoptics, being the simplest nontrivial
quantum light source: a two-level systemdriven coherently close to, or at, its resonance [1–10]. Early on, it has
been recognised as a single-photon source (SPS) that should exhibit perfect antibunching, that is, a complete
suppression of photon coincidences. Intuitively, this is because no photon can be emitted (or detected by an
ideal detector) at the same time as another one, due to the finite reloading time of the system after an emission.
This experimental observationmade resonance fluorescence, in fact, the first system to fully prove the
quantisation of light [8], by violating the classical Cauchy–Schwartz inequality for the intensity–intensity
correlations in time. This has since been tested and confirmed throughout the history of the field in a variety of
platforms [11–18]. It also created an obvious incentive of perfecting this source of single-photons for
applications, since a SPS is a crucial component of quantum technology inmost platforms, including cold atoms
[19–21], ions [22–24], molecules [25–28], semiconductor quantumdots [29–37], superconducting circuits
[17, 38–41], nitrogen vacancies [42–44], and still others. Recent years have been particularly fruitful towards the
implementation of an ideal SPS ripe for commercial development and industrial applications [45–51]. In this
respect, resonance fluorescence appears to be among the best contenders. Togetherwith its sub-Poissonian
statistics, it also has a very strong emission rate thanks to the efficient coherent driving, and, in contrast to
incoherent driving that results in power broadening, it can be operated in the so-calledHeitler regime [1]where
its spectral width is actually narrower than the natural linewidth of the emitter, being instead given by the driving
laser. This led to the claimof the emission as an elastic scattering (i.e., Rayleigh) peak, which retains the
coherence as well as spectral width of the laser [52, 53], and the antibunching of the two-level system [54].

Resonance fluorescence is therefore a precious resource, since all these three attributes are precisely those
demanded by the prospective quantum circuits for the technology of tomorrow: antibunching to deal with
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quantum states, brightness to provide a strong signal and narrow spectral width to have indistinguishable
photons. These qualities were first exploredwith a single trapped ion [54] andmore recently exploitedwith a
single semiconductor quantumdot [46, 55–59]which is still under active development. All these studies follow a
similar trend: they analyse spectral properties with the best available spectral resolution on the one hand, and
then the statistical properties (the second-order correlation function)with the best available temporal resolution
on the other hand. These constitute two different experiments, providing excellent results in both cases and
seemingly fulfilling the ideal scenario we have just described: perfect antibunching of spectrally narrow sources.
However, one should contrast these qualities together, that is to say, simultaneously. One is ultimately interested
not in howwell the source performswhen considering one aspect or the other in isolation, but how an optical
target that is excited by the sourcewill ‘perceive’ these photons. Such a target will have a spectral widthΓ and
couple to the source accordingly, preventing it to see the photon statistics with an independent time resolution,
that is needed to extract the best antibunching. Therefore, to properly describe the SPS, one needs to study the
spectral and statistical properties of resonance fluorescence as detected in one and the same experimental setup,
including theHeisenberg time and frequency uncertainties.

Doing so, we find that for resonance fluorescence, subnatural linewidth of the emission is not compatible
with a simultaneous strong antibunching. The observed (or detected) linewidth of the Rayleigh peak is
broadened by the spectral resolutionΓ. Keeping this broadening below the natural two-level systemdecay
rateγσ spoils the antibunching and brings the statistics to the Poissonian limit. The expression for the filtered
(or convolutedwith the detector) second-order correlation function of resonance fluorescence at low driving is
indeed known to be g g= + Gs s[ ( )]( )ga

2 2, which goes to1 as G l 0 [60]. Antibunching is thuswashed out by
the large detector time uncertainty1/Γ. This incompatibility is shown for our problem at hand in rows(i), (ii)
offigure 1.

Although it does notworkwith resonance fluorescence per se, the intuition of the pioneering experiments
[55, 56] to realise a subnatural-width antibunched source (implying, simultaneously), is not forbidden on
fundamental grounds: one can imagine a source as spectrally narrow and antibunched as onewishes,merely by
changing the timescale(1/γσ). There is therefore no a priori reasonwhy the initial claim could not be realised
oneway or the other.

In this text, we present a scheme to do that, that is, to provide perfect antibunching from resonance
fluorescence without renouncing to subnatural linewidth. This is achieved, in contrast to previousworks, so that
the same detection setupmeasures simultaneously these two quantities: antibunching and narrow spectral width.
We base our protocol on the understanding of such perfect antibunching as the result of destructive interference
between the coherent and incoherent fractions of the emission: the coherently scattered photons and those that
are absorbed and re-emitted [15]. The detector can then be seen as afilter that breaks the equilibriumbetween
these two fractions, absorbingmore coherent than incoherent light.We can thus restore this equilibrium since
coherent light is easy to control.We propose to do sowith a setup such as the one sketched infigure 1(a), where
the coherent fraction in the resonance fluorescence signal is reduced bymaking it interfere with an external π-
phase shifted laser beam, attenuated to the right proportion for the compensation to be perfect.We provide the
exact (analytical) condition for this to occur aswell as a full analysis of the spectral, statistical and intensity
properties in terms of all the relevant parameters of the problem.We also show that, in fact, such a source goes
even further and behavesmore closely to an ideal SPS thanwould resonance fluorescence alone operating in a
different timescale.

The rest of the paper is organised as follows: in section 2, we review the spectral and statistical properties of
resonance fluorescence for ideal and realistic detectors, introducing the theoretical formalism aswe do so, and
we showhow antibunching can be interpreted in terms of coherent and incoherent contributions to the second-
order correlation function. In section 3, we present the setup to obtain perfect antibunching and high frequency
resolutionwhen considering realistic and simultaneousmeasurement of statistical and spectral properties, based
on a complete theoretical description.We provide analytical expressions for the condition to be fulfilled, that
could guide its experimental realisation. In section 4, we further analyse other important quantities to
characterise the system, namely, the coherence time of the second-order correlation function and the emission
rate of the source. Finally, in section 5, we conclude.

2. Antibunching in resonancefluorescence and the impact of detection

Weconsider the lowdriving regime of resonance fluorescence, or so-calledHeitler regime [1]. In this scenario,
the emitter ismodelled as a two-level systemwith annihilation operatorσ and is driven coherently with aweak
laser of intensityΩσ.We consider the laser exactly at resonancewith the two-level transition for simplicity but
everything can be easily generalised to the close-to-resonance case by adding a detuning parameter. Importantly,
we take into account the physical detection of resonance fluorescence. This is a central point of our approach as
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it allows us to consider the physical, self-consistent and complete description of the source. In particular, this
accounts for the uncertainty in time and frequency of the detected photons [61]. Technically, this involves the
integration of the convolution between the observable and afiltering function, which becomes exponentially
difficult as the number of photons involved in the observable increases [62, 63]. Such a difficulty can be
overcome if the detectors are considered as physical passive objects that receive the emission of the quantum
sourcewithout disturbing it. This can be obtainedwhen the detectors are described as harmonic oscillators that
couple to the source either in the limit of vanishing coupling [64] or through the so-calledcascaded coupling [65].
In either of these equivalentmethods [66], the excitation is allowed to go from the quantum source to the
detector while the feedback in the opposite direction is suppressed. Following these ideas, our detector is
therefore considered as an harmonic oscillator, with bosonic annihilation operatora, and the full and self-
consistent description of resonance fluorescence becomes an easy theoretical problem again. Indeed, themaster
equation describing this complete system is given by(we take ÿ=1 fromnowon):

$ $r r
g

r r¶ = + +
Gs

s[ ] ( )Hi ,
2 2

. 1t a

Thedissipation term$ r r r= - -† † †c c c c c c2c is in theLindblad form,withγσ andΓbeing thedecay rates of the
two-level systemand thedetector, respectively.TheparameterΓprovides the spectralwidthof thedetector and its
inverse, 1/Γ, thus gives the temporal uncertainty of thedetector. TheHamiltonian, s s= W + +s( )†H

s s+( )† †g a a , describes the laser driving the two-level system (with aparameterΩσ thatwe consider tobe real

Figure 1. (a)Scheme of our proposed setup to generate a single-photon source forwhich one can simultaneouslymeasure, in the same
experiment andwith both time- and frequency-resolving detectors, a narrow spectrumof emission and perfect antibunching. From
left to right: part of the excitation laser (red beam) is attenuated and π-phase shifted, to later interfere with the resonance fluorescence
signal (blue dots). The right-hand side of the table represents a standardHanbury-Brown–Twiss setup tomeasure the second-order
correlation of the total signal. (i)Using spectrally wide detectors tomeasure antibunching broadens the spectrumof emission (solid
red) as compared to the natural linewidth of the emitter (dashed black). (ii)Using spectrally narrowdetectors resolves well in
frequency but spoils the antibunching. (iii)Using the scheme in(a)with narrowdetectors, we can have simultaneously perfect
antibunching (iii) and a narrow spectrum (solid blue).
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without loss of generality) and its coupling to thedetector is taken asg (also real).We set thedetector at resonance
withboth the laser and the two-level system.

One of the central quantities in this work is the second-order correlation function [67], typically defined, for
a sourcewith operators in the steady state, as:

t
t t

=
á + ñ

á ñ
=

á ñ
á ñl¥

( ) ( )( )( ) ( )
[ ( )]

( )( ) ( )( )
† †

†
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Weomit the time t in all expressions, whichwe consider to be large enough for the system to have reached the
steady state.When the delayτ is omitted aswell, it is implicitly assumed to be zero: t= =( )( ) ( )g g 0s s

2 2 , which
describes coincidences.Wewill also be considering theNth-order correlation functions, but then always at zero
time delay: = á ñ á ñ( ) † †g s s s ss

N N N N .
Let us start by reviewing the spectral properties of this systemwith perfect frequency resolution [2, 68]. The

details of the derivation can be found in appendix B. The normalised steady state spectrumof emission in the low
driving regime, gWs s� , formally defined in equation (B.8), reads

w d w
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= - +
+
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g
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whereK2 is given by, up to second order in the driving, g= Ws sK 82
2 2 . This is simply the superposition of a delta

and a Lorentizan peaks, both centred at the laser frequency (at zero), with nowidth and γσ-width, respectively.
The delta function term is the Rayleigh peak attributed to the elastic scattering of the laser photons by the two-
level systemwhile the Lorentzian term comes from the actual two-photon excitation and re-emission [69]. Note
that in the linear regime and particularly in the limit W ls 0 and excluding second-order terms (which involve
two-photon states in the detector), the spectrumof emission reduces to the delta function. That is, if one is
interested in the spectral density of isolated one-photon events only, regardless of their time of arrival or their
relation to other photons, the source is effectively providing photons as spectrally narrow as the laser (here
infinitely narrowmaking the source perfectlymonochromatic). However, if such photons are to be used in
temporal relationwith others, such aswhen considering their antibunching properties, then the second-order
part of the spectrummust be taken into account. By having the frequency resolution below the natural emitter
linewidth (in order tomaintain a narrow spectrum tofirst order) onefilters out part of the incoherent spectrum
which determines its statistics. On the other hand, increasing the frequency resolution in order to increase
temporal precision, broadens the spectrum. As a result, resolving antibunching spoils the subnatural linewidth
of the source, and vice versa. Tomake this important pointmore quantitative, let us consider ( )ga

N theNth-order
correlation function of resonance fluorescence asmeasured by a detector with both frequency and time
resolution (set at resonancewith the source). The expressions for a general laser driving strength exist but are
bulky(see, for instance, the caseN= 2 in equation (19b) of [70]). Here, sincewe are interested in theHeitler
regime, it is enough to expand these expressions to the lowest order in the driving, which is, for á ñ†a aN N , to order

Ws( )O N2 , as shown in appendix AwithΩa=0. This allows us to generalise to all orders the expression for the
correlations, that simply reduces to (forN�2):

�
g

g
=
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s
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-
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k
. 4a
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N
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1 2

2

Wehave already discussed the caseN=2 above. As expected, when G l ¥, this expression recovers the
perfect antibunching of the source itself, i.e., when the full emission is being detectedwithout any frequency
resolution: = =sGl¥

( ) ( )g glim 0a
N N [64]. In the opposite limit of narrow frequency filtering, the result for a

coherent field is obtained: =Gl
( )glim 1a
N

0 for allN.With the present semi-classicalmodel for the laser, which
has zero linewidth (perfectfirst-order coherence), we do not recover the expected thermal value for photons of
completely undetermined time of emission, i.e., ¹Gl !( )g Nlim a

N
0 , because it is impossible tofilter inside the

laserwidth [60]. For a general intermediateΓ, the perfect antibunching needed for quantumapplications, is
spoiled: -< ( )g0 1a

N . For instance, whenfiltering at the natural linewidth of the emitterΓ=γσ, we obtain a
reduction of 25% in the antibunching(ga(2)=1/4) andΓ=γσ/3 leads to =( )g 0.56a

2 . As a consequence,
making use of the subnatural spectral width of such a SPS [56], which implies detecting its photonwith some
accuracy in time and frequency, or coupling its output light to an optical element withΓ<γσ, spoils its
statistical properties. In summary, subnatural linewidth and antibunching are in contradiction for resonance
fluorescence in its bare form. The system emits photonswhich one can choose to see, depending on the detection
scheme, with the properties of the driving laser or of the emitter, but not simultaneously.

In order to address this discouraging issue, let us dive deeper into themechanism that yields antibunching in
resonance fluorescence when integrating over its full spectrum, with G l ¥. This can be understood in terms
of interfering fields: it has indeed been long known that the emission of a coherently driven two-level system can
be expressed as a superposition of a coherent and a squeezed incoherent field [15, 71].We apply ameanfield
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procedure andwriteσ=α+d, with amean coherent field a s= á ñand d an operator for the quantum
fluctuations characterised by á ñ =d 0. The coherent field is the one that gives rise to the delta function in the
spectrumof emission(3)while the Fourier transformof tá ñ( )†d d provides the Lorentzian peak, i.e., the
incoherent part of the spectrum, that transforms into theMollow triplet when the driving increases [2].Working
out s

( )g 2 in termof this decomposition results in four contributions:

! ! != + + +s ( )( )g 1 , 52
0 1 2

that grow as powers ofα:
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From the derivation in appendix B, we can further substitutea g g= - W + Ws s s s( )2i 82 2 and s sá ñ = á ñ =s
†n

gW + Ws s s( )4 82 2 2 . This decomposition is what onewould obtainwhen performing a g(2)measurement on the
output of a beam splitter, that would have σ as the associated output armoperator, with input fieldsα and d.
This is thewell known homodynemeasurement, first suggested byVogel [72, 73] to analyse the squeezing
properties of signald thanks to the controlled variation of a local oscillatorα. The numerator of!0 in the left-
hand side of equation (6a) is the normally ordered variance of thefluctuation intensity, i.e.,
á D ñ = á ñ - á ñ( )n n n: : : :d d d

2 2 2 with = †n d dd andD = - á ñn n nd d d . Therefore, having ! < 00 indicates sub-
Poissonian statistics of thefluctuations, which, in turn, contributes to the sub-Poissonian statistics of the total
fieldσ. The numerator of!1 in equation (6b) represents the normally ordered correlation between the
fluctuation field-strength and intensity, á ñ = á D D ñ†d d d n: :d

2 , which have been referred to as anomalous
moments [72, 73]. A squeezed-coherent state has such correlations. The numerator of the last component, !2, in
equation (6c), can bewritten in terms of one of the fluctuation quadratureX=(d+d†)/2, in the following
way: a aá ñ -∣ ∣ ( ∣ ∣ )X4 : :2 2 2 . If this is negative, there is some quadrature squeezing.

The four terms of this decomposition for gσ
(2) are shown infigure 2(a), as a function of the intensity of the

driving laser. They always compensate exactly and the final result is, of course, the perfect sub-Poissonian
statistics of the two-level system emission.However, as is clear in thefigure, this compensation occurs in
different ways depending on the driving regime [15]:

• In the region of large driving (Ωσ? γσ), where the spectrumof the emitter displays aMollow triplet, we have
that ! = -10 with ! != = 01 2 meaning that antibunching appears solely due to the sub-Poissonian
statistics of the fluctuations, that dominate over the vanishing coherent component a =W l¥slim 0 (and
therefore sld ).

• In the intermediate driving region (Ωσ∼γσ), it is ! < 01 that almost fully compensates the positive
contributions of !+1 0. This is where !0 changes sign and thefluctuations become super-Poissonian.

• In theHeitler regime(Ωσ= γσ) that interests usmore particularly, it isfluctuation squeezing that plays a
major role, being this time the one responsible for antibunching, ! != - + = -( )1 22 0 .

Note that in theHeitler regime, !1 vanishes again. Consequently, resonance fluorescence reaches itsmaximum
squeezing also in this region, an effect that has been confirmed in the emission from ensembles of atoms [74–78]
and recently also from single atoms [79] and quantumdots [80]. Another way to understand the origin of
antibunching in this region is as an interference between the coherent and incoherent parts of the emission(see
equation (3)), since those termswhich are either purely coherent (1) or purely incoherent (!0), are fully
compensated by the 50%–50%mixed one,!2.

One can also compute the decomposition for the filtered second-order correlation functiong(2)a by applying
again equations (6a)–(6c), nowwith the detector field operators, that is with sl á ñ l á ñsa n n, a and a = á ña .
This is shown infigure 2(b) for theHeitler regime as a function of the filter widthΓ. One can see how,with
filtering, or equivalently when detection is taken into account, the terms no longer exactly compensate each
other and their sumdonot add up to exactly =( )g 0a

2 . Speaking in spectral terms, this is because the filter is
leaving out some of the incoherent part that should compensate for thefixed coherent one (the delta function is
always fully included in the convolutionwith the filter centred at ωL=0). In theHeitler regime, this is clear
whenΓ<γσ, since γσ is thewidth of the (incoherent)Lorentzian peak, as shown in equation (3).
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3.DestructiveN-photon interference and antibunching restoration

The decomposition of the filtered second-order correlation functionga
(2) outlined above allows us to determine

what ismissing in terms of coherent and/or incoherent fractions to produce the perfect antibunching. Since the
compensation comes, in part, from a coherent field, and such afield is easy to produce and control in the
laboratory, one can actually restore full antibunching by superimposing to the filtered resonance fluorescence an
external coherent fieldβ, making them interfere at a beam splitter, and collecting the new signal for further use
or analysis.We can find theoretically the value ofβ that ensures that the resulting totalfield, s=t σ+r β (with
t and r the transmission and reflection coefficients of the beam splitter, respectively, taken real and such that
r2+t2=1), although it has been filtered, still produces perfect antibunching at the output.Wewill call ˜( )ga

2 the
second-order correlation function of thisfiltered signal that is interferedwith a correcting external coherent
beam, and proceed to showhow to cancel it despite thefiltering. This, in effect, realises the previously claimed
subnatural-linewidth SPS [55, 56]. This becomes possible because the source is not a passive object anymore,
that relates time and frequency of its emissionmerely through the Fourier transform, but includes a dynamical
element.Wewill see in the following that, as a consequence, our source even achievesmore than joint subnatural
linewidth and antibunching.

The principle for antibunching restoration is simple. Since the filtering reduces the incoherent fraction,β
should lower (proportionally) the coherent fraction. This is possible for two coherent fields by destructive
interferences. That is, given that at resonance a a= - ∣ ∣i , we shouldfind aβof the formb b= ∣ ∣i such that the
totalmeanfield is reduced to a b- -( ∣ ∣ ∣ ∣)t ri . Out of resonance, bothα andβhave imaginary and real parts but
the same ideawould apply. This protocol and the condition for the externalβ-field are one of the chief results of
this text.We nowproceed to describe a possible setup to realise this interference and a theoreticalmodel that
provides an exact analytical condition.

Figure 2. (a)Second-order correlation function of the emission from a two-level system(dashed black line) and its decomposition
equation (5) into the four components (solid coloured lines) given by equations (6a)–(6c), as a function of the laser excitation.
Regardless of the driving regime, the total emission fulfilsgσ

(2)=0. In theHeitler regime, on the left-hand side, this is due to a
destructive interference at the two-photon level between the coherent and incoherent (squeezed) components of resonance
fluorescence. In the strong driving regime, right-hand side, perfect antibunching is due to the dominating sub-Poissonian
fluctuations. (b)The same decomposition but now for the filtered emission ( )ga

2 and as a function ofΓ in theHeitler regime
(Ωσ=10−3 γσ). In this case, the antibunching gets spoiled as the frequency resolution is increased by filtering, leading to an imperfect
compensation of the components. This can however be restoredwith an external laser.
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The simplest andmost reliable way to interfere resonance fluorescence with a controlled coherent field is to
divert some light from the laser that excites the two-level system in the first place. In this way, oneworkswith the
same coherence time of the driving laser and should be immune to slowfluctuations. A possible setup is sketched
infigure 1(a): the laser beampasses through afirst beam splitter4, that redirects part of it to the two-level system
on one output arm and to an attenuator and a phase shifter on the other output arm. The emission of the two-
level system (σ) and the attenuated laser (β) are admixed at a second beam splitter. The output constitutes our
new antibunched source s=t σ+r β, which can be further analysed,measuring, for instance, its second-order
correlation function in aHanbury-Brown–Twiss setup, as depicted in the figure.

In the theoretical description,we include thedetectors in thedynamics tonowreceive simultaneously the
attenuated laser and the emissionof the emitters=t σ+rβ. This ismodelledby adding a coherent driving
term to thedetector = W -( )†H a aia a , substituting l +H H Ha in equation (1), with �W Îa .Note that the
phase of thedetector driving isfixed toβ=iΩa/g and the resultingHamiltonian is then s+ = W +sH Ha

s + W +( ) †g t r g ai h.c.a In thisway, the detector is effectively performing thedescribedhomodyneprocedure
between the light emitted by the two-level systemand a coherentfieldwith amplitude rΩa/(tg). Furthermore, our
model describes detection self-consistently andallowsus to study the joint dynamical properties (in both timeand
frequency)of the light producedby the superposition. Sinceweare interested in the lowdriving limit,we expressΩa

in termsofΩσ through anewdimensionless parameter:

�
g

=
W
W
s

s
( )r

t g
. 7a

Wealso define� �¢ = t r , which absorbs the dependence on the transmission and reflection parameters of the
beam splitter.We take both � and �¢ to be real and positive.With these definitions, �b g= W ¢s si and it is
clear that �¢100 is then the percentage of the laser intensity that finally interferes with resonance fluorescence
while � is the fraction that is needed to attenuate the laser for the compensation to be effective. The totalmean
field of the signal that exits the beam splitter towards detection (the right-hand side infigure 1(a))
reads �a b gá ñ = + = - W -s s( )s t r ti 2 .

Next, we solve the newmaster equation in theHeitler regime, following the procedure in appendix A, we
find that the detectedNth-order correlation function is

�

�
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where ˜( )ga
N is for the compensated signal and ( )ga

N is given by equation (4). Note that all ˜( )ga
N have a divergence

at �¢ = 2, independently of the filtering parameterΓ/γσ. This is another type of interference related to
superbunching that lies beyond the scope of the present analysis and that is discussed elsewhere [81]. ForN=2
the correlation in equation (8) simplifies to

� �
�

g g
g

=
- - ¢ ¢ + G

- ¢ + G
s s

s

⎡
⎣⎢

⎤
⎦⎥˜ ( ) ( )

( ) ( )
( )( )g

4 4

2
, 9a

2
2

2

which becomes exactly zerowhen the attenuation factor takes the two values

�
g

¢ = o
G

G + s
o

⎛
⎝⎜

⎞
⎠⎟ ( )2 1 . 102,

This result is valid tofirst (leading) order inΩσ, meaning that when the condition(10) is fulfilled, =˜( )g 0a
2 with

deviations due to higher-order terms in the driving only, so remaining extremely small. The antibunching
becomes ‘exactly zero’ only in the limit of vanishing driving. In fact, would ˜( )ga

2 be exactly zero, then also all

higher-order termswould satisfy =˜( )g 0a
N forN�2 [82] and provide the ultimate, perfect SPS that emits a

Fock state of a single photon, sowith vanishing signal over time. In theHeitler regime butwith afinite signal, the
antibunching remains so small as to bewell approximated by zero on thefigures, in contrast to normal resonance
fluorescence.

Note that the protocol we have just outlined becomesmeaningless for two extreme cases: in the limit of
broadfilters, wherewe recover perfect antibunchingwithout the interference, � ¢ =Gl¥ -lim 02, , and in the

limit of vanishingly narrowfilters, where � ¢ =Gl olim 20 2, and ˜( )ga
N diverges. The latter casemeans that if the

filter is very narrow, compensating for the loss of the incoherent component becomes impossible, as one ends up
removing completely the coherent component with no signal left. One can nevertheless reduce the linewidth by

4
Wehave not taken into account thefirst beam splitter offigure 1 in the calculations for simplicity, but, assuming it is balanced (50:50),

doing sowould simply rescale the original driving to 2Ωσ in order to obtain the results in themanuscript.

7

QuantumSci. Technol. 3 (2018) 045001 J C LópezCarreño et al



over an order ofmagnitude as compared to the natural linewidth of the emitter, which amply qualifies as a
subnatural linewidth.

The two solutions in equation (10) correspond to two differentmeanfields that, despite having different
phases, lead to the same intensity in the interference signal, a b g gá ñ = + = o W G G +s s so o ( )s t r t2i , and,
therefore, both successfully compensate for the incoherent component, recovering perfect antibunching for any
given realistic detection resolutionΓ. Nevertheless, they are of a very different character: � ¢ +2, changes the phase
of the originalmeanfield, from a a= - ∣ ∣i to a bá ñ = ++ +∣ ∣s t ri , while � ¢ -2, corrects for the intensity
maintaining the same phase a bá ñ = - +- -∣ ∣s t ri . Thismanifests in the higher-order correlation functions(8):
while evaluating them at � �¢ = ¢ +2, does not lead to small values, for � �¢ = ¢ -2, they remain close to zero as
well (although in general do not recover the exact zero)5. Note that, by performing awave-function expansion,
following the procedure in [83, 84], on the joint state of the emitter and detector, the attenuation fractions in
equation (10) yield a suppression of the two-photon probability in the detector [81]. This corroborates the idea
that perfect antibunching is recovered thanks to an interference effect at the two-photon level, that is, involving
not only coherently scattered photons but also the incoherent (second order) ones in equation (3).

Infigure 3, we show the correlation functions for the interference signal, equation (8), when the condition
for perfect antibunching ismet, i.e., � �¢ = ¢ -2, , so that =˜( )g 0a

2 (solid lines), andwe compare it to the case
without the interference, i.e., �¢ = 0 (dashed lines), which is the case from the literature [55, 56].We plot the
casesN=2 (blue), 3(green) and 4(red), as a function of the spectral width of the detector,Γ/γσ. Note that the
solid blue line does not appear in themain figurewhich is in logarithmic scale, because its value is exactly zero to
this order in theHeitler regime. This is themain result as compared to ( )ga

2 which, although it can get relatively
small, can do so only for broad linewidths, and loses its antibunching for narrow lines. In stark contrast, the
perfect antibunching for the interference signal remains satisfied evenwhen thefilter ismuch narrower than the
natural linewidth of the emitter. On the other hand, the higher-order correlation functions also yield
noteworthy results, whichwewill only briefly discuss. In contrast to ˜( )ga

2 which always remainmuch smaller
than its unfiltered counterpart, there are filter linewidths where the interference results in larger higher-order
correlations as compared to the standard case. This is clear in the inset offigure 3which is in linear scale. If one
wants to remainwithin small values of this higher-order functions, this limits hownarrow thefiltering can be,
though still allowing for considerable improvement.We have also already noted howone is limited by the signal.
Finally, even though perfect antibunching remains true for arbitrarily narrowfilters in the theory, asΓ=γσ,
the systemwould becomeunstable under possible small variations of the laser intensity: � ¢ =Gl -lim 20 2, ,

which is a diverging point for t˜ ( )( )ga
2 . A smallfluctuation in the laser intensity would bring the system from

perfect antibunching to a huge superbunching [81]. This could be seen as an advantage, providing a highly
tunable quantumphoton source that can be switched between antibunching and bunching by slightly adjusting

Figure 3.Comparison between, on the one hand, theNth-order correlation function for the filtered light ˜ ( )ga
N with the interference

signal, equation (8), at the condition of perfect antibunching, � �¢ = ¢ -2, (solid lines), with, on the other hand, the corresponding case
ga
(N)without the interference, i.e., normal resonance fluorescence (dashed lines). Themain panel is in logarithmic scale and the inset in
linear scale. ˜ ( )ga

2 only appears in the linear scale because it is exactly zero for allΓ.

5
For everyN there are two values, � ¢ oN , , that lead to =˜ ( )g 0a

N , but they do not imply zero values for the other functions in general.
Remarkably, for a givenN and the parameter � ¢ -N , , there is always a G ¢N N, forwhich also the coherence function ¢N is exactly zero, as long
as ¢ > +N N 1. Therefore, exact zeros are found for pairs of coherence functions, ¢ > +{ }N N N, 1 , when using this particular pair of
parameters � G- ¢{ },N N N, , . For instance,Γ2,4=γσ/24 and gG = o s( )4 13 122,5 . Since the antibunching obtainedwith our scheme is
due to interference between coherent and incoherent components and there are only two parameters left in equation (9), it is reasonable that
the condition =˜ ( )g 0a

N can be satisfied for two different ¢N N, simultaneously, obtaining two conditions for �¢ andΓ.
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the second laser attenuation.However, this superbunching effect also follows from an interference and is not
linked toN-photon emission or other types of structured emission [81].

A representative filter linewidth for optimal operation can be taken asΓ=γσ/5, whichwe also use as the
reference case in the followingfigures, because it is well below the natural emitter linewidth and brings an
improvement essentially everywhere, i.e., wefind that the interference yields the values =˜( )g 0a

2 , =˜( )g 0.36a
3

and =˜( )g 0.08a
4 while without the interference, one gets = =( ) ( )g g0.69, 0.35a a

2 3 and =( )g 0.14a
4 . Note also the

existence of a second localminimum for ˜( )ga
4 in figure 3.Wefind that there is such a localminimum for all

higher-order correlators except the one that immediately follows the one that is exactly cancelled by the
interference (i.e., ˜( )ga

3 in this case). Further discussion of the quantum state generated by this interferencewould
lead us too far astray, therefore we now turn to two other quantities of considerable interest for single-photon
emission purposes.

4. Coherence time and emission rate

So far, we have focused on two aspects of the SPS: its second-order correlation function at zero time delay, ˜( )ga
2

(which by abuse of languagewe occasionally refer to as ‘antibunching’), and the spectral width of the emission, as
it is observed or, equivalently, filtered,Γ. There are two other quantities which are of prime importance to
characterise such a source: its coherence time, which estimates how long the correlations are retained, and the
amount of signal.We nowdiscuss them in turn, startingwith the coherence time, whichwill show that the best
features of the SPS remain to be presented.

Inmost SPSs, other than the onewe present, the coherence time has to be longer than the temporal
resolution of the detector, or the correlations become randomised. Also, they are required to evolve smoothly
rather than featuring huge oscillations, that are sometimes observed in thewake of strong antibunching [85]. To
characterise our source in this respect, we consider the time-resolved second-order correlation function t˜ ( )( )ga

2 ,
which can be computed fromourmaster equation (1), deriving the equations from appendix A and applying the
quantum regression theorem. Although in the followingwe present numerical results for these correlations, so
as to easily access arbitrary time delays, the same procedure as for the zero-delay case can produce some closed-
formbut lengthy formulas in theHeitler regime, as is detailed in appendix A6.

Infigure 4, we compare the delayed second-order correlation function asmeasured by the detectors for
(a)resonance fluorescence only, i.e.,setting�¢ = 0, with (b)its interference with the optimally attenuated
laser, i.e.,� �¢ = ¢ -2, , as previously discussed. For broad enoughfilters, whenΓ?γσ, themeasured
correlations are perfectly antibunched and identical for both configurations. This happens because suchwide
filters collect the full spectrum and the interference occurs naturally. However, as thewidth of the filters
becomes comparable to the natural linewidth of the emitter, the behaviour of the correlations in the two
configurations start to differ.Without the interference with the attenuated laser, antibunching is rapidly lost (see
dotted red line in figure 4(c)) and, in the limitΓ=γσ, the emission becomes completely randomised,
with t =Gl ( )( )glim 1a0

2 . However, with the interference, perfect antibunching is preserved regardless of the
width of thefilter, as already stated.Here, two new effects are remarkable: (i) the coherence time, or the time
between single-photon emission, increases as the filter width becomes narrower and (ii) the correlations display
a plateau of t =˜ ( )( )g 0a

2 aroundτ=0. This plateau is particularly noteworthy. It is not entirely obvious on the
scale offigure 4(c) since its extent is over τγσ=±2.5 only, but it results in a dramatic type of correlations for the
photons. Namely, such a plateau, as opposed to the standard case whose derivative is zero at zero-coincidences
only, corresponds to opening a gap in the time separation between consecutive photons,meaning thatwhile the
case without interferencemakes it only very unlikely tofind photon arbitrarily close, the interference SPSmakes
it impossible. In this sense, this restores a notion of ‘perfect antibunching’ even though the ˜( )ga

2 to all orders does
not cancel exactly. The character of such correlations is better seen infigure 4(d), which shows the cumulative
probability that a pair of consecutive photons are separated by a delay of up toΔτ, as a function of this delay
which, so as to compare photon sources with different emission rates, we have normalised to themean delay
between consecutive photons(which is given by the inverse of the emission rate, 1/I). These results have been
obtainedwith a quantumMonteCarlo simulation of the filtered resonance fluorescence [66].We compare three
cases: a coherent (random) source(dashed-dotted purple), and then the SPSwithout(dashed red) and
with(solid blue) the interference from the laser. For delays larger thanIΔτ≈10−2 the lines for the three
sources converge, since at such large delays, the short-time correlations are lost and dominated by pure
randomness, therefore recovering the uncorrelated case. At about IΔτ≈102, the lines further saturate to unity,
as they should fromprobability normalisation.

6 t˜ ( )( )ga
2 could be computed analytically in the case of simple detection of resonance fluorescence only, with� = 0, using the formulas for

the frequency and time-resolved correlation functions in the supplementalmaterial of [64] and setting the detection frequency to zero.
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The interesting features lie at short delays. There, it is seen that, while for the coherent source the cumulative
probability increases linearly asIΔτ (the exact expression for this simple case being t- D( )I1 exp ), for the
emitter without the interference, the growth is slower because of its antibunching, which lowers the probability
for photons to be detected close to each other. The difference is however small and the trend is qualitatively
similar to that of the uncorrelated photon source! Indeed, such a difference is eclipsed by the type of suppression
that is observed by the emitter with the interference (solid blue line). There, the departure ismuchmore
pronounced and is qualitatively of a different character, increasing its slope till a point where it would become
vertical,meaning the complete impossibility to ever detect two photons closer to each other than a finite nonzero
timewindow. This suppression comes from the plateau in the t˜ ( )( )ga

2 , and shows how the enhancement in the
correlations that is obtain through the interference cannot be obtained by using another emitter operating in a
different timescale.

As a final important characteristic, we have to address the only feature for which our proposed SPS does not
overcome the other types of sources: the intensity of the signal. One of the acclaimed qualities of resonance
fluorescence is that it is ultrabright [55, 56], being indeed efficiently excited by a resonant laser, in thefirst place.
Note that an incoherently driven SPSwould be brighter still as it can saturate the emitter, providing twice as
much signal than under coherent drivingwhich is limited by stimulated emission. The incoherently pumped
SPSwould, however, emit photons of completely undetermined frequency due to power broadening. In our
case, thewhole procedure comes at the price of losing signal, i.e., of reducing the total emission rate = Gá ñI na .

Figure 4. (a), (b)Time-dependent second-order correlation function of the signal, with (ga(2)(τ)) andwithout ( t˜ ( )( )ga
2 ) the interference.

Without the interference (a), resolving in frequency spoils the antibunching.With the interference (b), antibunching remains perfect
( =˜ ( )( )g 0 0a

2 ) at allΓ, increases its coherence time and develops aflat plateau at small time delays. (c)Two cuts from the density plots
atΓ=γσ/5. The plateau for ˜ ( )ga

2 is not easily distinguished in this scale (it is actually better seen infigure 1(iii)) as extending over
≈±2.5/γσ only. (d)Cumulative probability that two consecutive photons are emittedwith a time separation of up toΔτ (normalised
to the inverse of the emission rate I), from a coherent or random source (dashed-dotted purple) and from resonance fluorescence
without(dashed red) andwith(solid blue) the interference from the laser. The case with interference fallsmuch faster and opens a gap
of time separationwhich photons cannot access.
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This is done in twoways: byfiltering out the incoherent fraction or resonance fluorescence to narrow its
lineshape (which technically should also toll other systems claiming subnatural linewidths) but also, in order to
compensate this loss of the incoherent fraction, by removing part of the coherent fraction through destructive
interferences with the laser. The total emissionwill thus clearly be reduced. To evaluate the brightness of our
homodyne schemeIint, let usfirst obtain that offiltered resonance fluorescenceIr.f.. The population of the
detectorá ñna is related to the population of the emitter that feeds it, á ñsn , through the emission spectrum at
resonanceSΓ, σ(ω=0) by

p wá ñ =
G

á ñ =s sG
∣ ∣ ( ) ( )n
g

n S2 0 , 11a

2

,

(see the equivalences in the supplemental of [64]), as long as there is no extra driving of the detector. Considering
the correspondence between the sensormethod [64] and the cascaded formalism(see [66]), we canwrite

gl G s∣ ∣g .We substitute as well the spectrum convolutedwith the detector, as explained in equation (B.9) of
the appendix B, which in theHeitler regime is simply

w
p w

=
G

G +
sG ( )

( )
( )S

1 2

2
. 12, 2 2

Sincewe are interested in the rates tofirst order in the drivingΩσ, only coherently scattered photons (thefirst
term in equation (3)) are included in this derivation. The emission rate from the filtered resonance fluorescence
then converges to the original emission (without detection):

g g= á ñ = Ws s s s ( )I n 4 . 13r.f.
2

In the case of interference with the attenuated laser, the spectrumof emission remains the same (the coherent
part only, tofirst order inΩσ) but the population is now that of the total admixed signal:

g= á ñs ( )I n . 14sint

This population can be easily computed:

*
�

b s b
g

á ñ = á ñ + + á ñ = -
W

s
s

s

⎜ ⎟⎛
⎝

⎞
⎠∣ ∣ [ ] ( )Rn t n r rt t2 1

2

4
. 15s

2 2 2 2
2 2

2

Finally, by comparing equation (13)with (14) and (15), wefind that the interference with the laser reduces the
emission rate by a factor related to� , as

�= -( ) ( )I

I
t 1 2 . 16int

r.f.

2 2

For the condition that yields perfect antibunching (� �= -2, ), this reduces to

g
=

G
G + s

( )I

I
t . 17int

r.f.

2

The signal is reduced from thefiltering procedure by a factorΓ/(Γ+γσ), times the loss of the beam splitter by a
factort2. This last factor could be overcome by using an unbalanced beam splitter where t∼ 1 and attenuating
the laser accordingly. Still, the brightness is reasonably good, for instance, for our reference case,Γ=γσ/5, the
reduction is only of a factor =I I 1 6int r.f. . On the other hand, we have gained enormously in antibunching and
the linewidth is narrow indeed.

Infigure 5we can see the comparison between both cases in a parametric plot whereΓ is varied, with the
width of thefilters being encoded in the colour gradient of each line, starting fromblack in the limit ofG l ¥,
and endingwith the respective colours, in the limit ofG l 0. The dashed red line corresponds to the case of
filtered resonance fluorescence butwithout interference. Its emission rate remains constant regardless of the
filter width following equation (13), with stillmost of the emission being provided by the delta peak anyway.
However, ( )ga

2 is quickly lost, as was previously discussed. The solid blue line shows the case with interference,

and ˜( )ga
2 there remains at zero independently of the filter width, but at the cost of lowering its emission rate, in

agreementwithequation (14).
We compare themwith a third case to evidence again that in presence of the interference, the emitter turns

into a qualitatively different type of SPS. Indeed, one could argue that the problemoffinding a bright
monochromatic sourcewith perfect antibunching for a given detector, could be solved simply by using an
emitter with a linewidthgŝ smaller than that of the detector, g gG <s s�ˆ , so that, by keeping the same driving
intensity, the emitter can be excitedmore efficiently. For the comparison to be fair, the choice ofgŝ would have
to be done in such away that the properties of the emitted light are equal to the ones obtainedwith our scheme,
namely: the emission spectrum and the coherence time of the t˜ ( )( )ga

2 have to be comparable in both cases. This
results in the dashed-green line where, for eachfilter sizeΓ, we choose an emitter with linewidthg g<s sˆ such
that the emission spectra and the coherence time are equal to those obtainedwith our scheme.With this
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configuration, the emission rate becomes larger with broader linewidths (because the emitter with linewidth gŝ
gets excitedmore easily than the onewith linewidthγσ), but such an enhancement in the emission rate comes at
the price of an increase in the zero-delay ( )ga

2 , as seen in thefigure. There, it is clear that all the sources have a
point in common, which is the case when all frequencies are detected. Imposing some frequency resolution
results in some departures. It appears obvious in the light of the demandsmade by a quantum circuit that the
only one truly tolerable for quantum applications are those suffered by our SPS.

We concludewith a quick overview of the feasibility of the proposed setup. This type of interference between
the original signal and a controlled laser beam (or local oscillator) is a standard technique in quantumoptics,
known as homodynemeasurement [71–73, 86–96]. In particular, looking at the second-order correlation
functionwhen tuning the laser beamproperties was first suggested byVogel [72, 73], to analyse the squeezing
properties of the signal. Several recent works [94, 95, 97]have also used this concept with a different objective,
namely, to subtract the coherent fraction from the signal (in their case the emission from a cavity in strong
couplingwith a quantumdot). Thanks to this procedure, they could observe the strong quantum features of the
remaining incoherent fraction such as increased indistinguishability, antibunching or a pulsedMollow triplet
spectrum.Our analysis, focused on the fundamentalmechanism, did not include the complications present in
some of the promising platforms to implement the effect, such as quantumdots. There, impact of dephasing for
instance should be taken into account andwe have done this in a follow-upwork [98]. Still other details, like the
fine-structure splitting, could also be included in increasinglymore refined studies. On the basis of the physical
principle that allows the effect to take place, however, we see no a priori reasonwhy it could not fully apply also in
more complex structures, at the price of possibly heavier expressions for the resonant condition andmore
intricate experimental configurations. It seems therefore clear to us that the variations needed to implement our
scheme are definitely within reach of the existing setups and that one could thus, in this way,finally realise a
sourcewith rapidly vanishing second-order correlation function and subnatural linewidth, simultaneously.

5. Conclusions

In conclusion, we have shown how to implement a new type of SPS that outperformswhat is currently available
on every account except in terms of the available signal. This is based on a variation of resonance fluorescence in
theHeitler regime, which has been claimed in the literature to provide very good antibunching aswell as
spectrally narrow emission.We have shownhow such properties in fact do not coexist in resonance fluorescence
in its bare form, due to neglecting the detection process of the emitted light, that needs to consider jointly these
two properties.

However, it is possible to reach this regime, by compensating for the loss of antibunching caused by the
spectral resolution of the detector, or, equivalently, by filtering. By decomposing the second-order correlation
function into various types offield fluctuations, we have shownhowone component, the coherent one, can
easily be corrected externally to restore the balancewhich yields perfect antibunching (tofirst order in the

Figure 5. (a)Comparison of the second-order correlation ˜ ( )ga
2 and emission rateI for the different schemes as a function of thefilter

linewidthΓ (which ranges from infinity at themeeting point, in black, to zero at the other extremities of each curve). The dashed red
line shows the case offiltered resonancefluorescence: the emission rate is constant, in agreement with equation (13), but as thefilter
narrows, themeasured ( )ga

2 deviates from0. The solid blue line shows our proposed schemewith the interference (with t∼1), which
results in a reduction of the available signal, as shown in equation (14), butmaintaining =˜ ( )g 0a

2 . The dashed-dotted green line shows
the casewhere, for everyΓ, we select a new emitter with a different decay rate -g gs sˆ such that, without the interference, the
emission spectra and the coherence time of the t( )( )ga

2 are equal to those obtainedwith our scheme. As the emitters have narrower
linewidths, the emission rate is larger, but the ( )ga

2 deviates rapidly from zero.
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driving).We provided an analytical expression for the condition to fulfil and proposed a setup to implement this
scheme.Wefind that the light that is produced indeed provides subnatural linewidth and vanishing
antibunching, at the only cost of a diminished signal, which remains, however, less than a factor ofmagnitude
drop for reasonable parameters. Interestingly, the photon correlations in time exhibit a new qualitative trend, in
the formof a plateau, which results in a timewindowwhere photon coincidences are suppressed exactly. This
leads to the realisation of a perfect SPS, in the sense that a superconductor is a perfect conductor: our sourcewill
never produce a coincidence in anHanbury-Brown–Twiss setupwhose correlation time is smaller than this
plateau. This is true tofirst order in the driving,meaning than in an actual setup, thewaiting time to observe such
a coincidencewill not be infinite, but only as large as required, which is not possible with a conventional SPS.
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AppendixA. Steady state of the combined resonancefluorescence and detector at
vanishing laser driving

Wefirst solve the dynamics for themean value of any systemoperator, which in itsmost general normally
ordered form reads [99] s s= á ñm n

m n{ } † †C a am n
m n

, , , (withm, nä{0,1} and �m n Î, ). It follows the equation:
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given by, in our case:
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and zero everywhere else. These equations can be solved numerically, choosing a high enough truncation in
the number of photons, in order to obtain a converged steady state (¶ =m n{ }C 0t m n, , , ) for any given pump
power. However, it is possible to derive analytical solutions in the case where we use a ‘sensor’ ( lg 0) in the
vanishing driving limit (W ls 0 after setting � gW = Ws sga ). In this case, it is enough to solve recursively
sets of truncated equations. That is, we start with the lowest order correlators, with only one operator,
whichwewrite in a vectorial form for convenience: s s= á ñ á ñ á ñ á ñ( )† †a av , , ,1

T. Its equation reads
¶ = + + W( )M A o gv v ,t 1 1 1 1 where o(Ω, t)means higher-order terms of these variables, whereΩ stands for
bothΩa andΩσ. This provides the steady state value = - + W- ( )M A o gv ,1 1

1
1 .We proceed in the sameway

with the two-operator correlators s s s= á ñ á ñ á ñ á ñ á ñ"( )† † † †a a a a av , , , , ,2
2 2 T, only, in this case, we also need

to include the steady state value for the one-operator correlators as part of the independent term in the
equation: ¶ = + + + W( )M A X o tv v v ,t 2 2 2 2 21 1 . The steady state reads = - + + W- ( ) ( )M A X o gv v ,2 2

1
2 21 1

with a straightforward generalisation = - + å + W-
=
-( ) ( )M A X o gv v ,N N N j

N
Nj j

1
1
1 .

We are interested in this text in photon correlators of the formá ñ†a aN N . These followá ñ ~ Ws( )†a a gN N N2 ,
to lowest order in bothΩσ andg. The normalised correlation functionsgΓ

(N) are thus independent of bothΩσ

andg to lowest order, and their computation requires to solve the N2 sets of recurrent equations and taking the
limits á ñ á ñl W ls

† †a a a alim limg
N N N

0 0 . This can be done analytically and this provides equations (4) and (8)
from themain text.

Appendix B. Two-time correlators and spectrumof emission for resonancefluorescence
(at any laser driving, without detector)

First, using again the regressionmatrix(A.2)–(A.5), wewrite the equations (A.1) in a vectorial form for the two-
level systemonly, by setting g=0. In this case, one-time correlators follow t t¶ = +t s s[ ]( ) [ ]( )M Aw w1, 1 1, 1
with
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t
s t
s t
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s s s

s
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i i

. B.1

The steady state solution reads

s
s
s s

g

g
g=

á ñ

á ñ

á ñ

= - =
W
+ W

-

W
s s

s

s s

s

s

s

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟[ ] ( )†

†
M Aw 1, 1

2

8

i
i . B.21

2 2

By applying the quantum regression theoremwhich states that two-time correlators follow the same equations
for the time delay as the single-time ones for time, we have that t t¶ = + á ñt s s[ ]( ) [ ]( )L R M L R A LRw w, , for
any two operators L,R, with

t
s t
s t
s s t

=
á ñ

á ñ

á ñ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟[ ]( )

( )
( )

( )( )
( )†

†
L R

L R

L R

L R

w , B.3

andw[L,R](0) obtained from the single-timemean values inw[1,1]. The solution is given by:

t = + á ñ - á ñ

= - á ñ + á ñ

t
s s s s

t

- -s

s

[ ]( ) { [ ]( ) }
{ [ ]( ) [ ] } [ ] ( )

L R L R M A LR M A LR

L R LR LR

w w

w w w

, e , 0

e , 0 1, 1 1, 1 . B.4

M

M

1 1

Wecompute the correlators that we need below and in themain text, by solving only two of these two-time
correlator vectors, for s s t[ ]( )†w , andw[1, σ](τ), sincewe have

*

* *

s s s t s s s t s s t s s s t
s s t s s t s t s s s t s t

s s t s t s s t

á ñ = á ñ =

á ñ = á ñ = á ñ =

á ñ = á ñ =

( )( ) [ ] ( ) ( ) [ ] ( )
( )( ) [ ] ( ) ( ) ( ) [ ] ( )

( ) ( ) { [ ] ( )}

† † † † † †

† † †

† †

w w

w w

w

, , , ,

1, , 1, ,

1, .

3 2

3 2

1

The initial conditions read

s s s s s= = á ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟[ ]( ) [ ]( ) ( )† †w w, 0

0
0
0

and 1, 0
0

0
. B.6

Wecan thus provide the expression for the second-order correlation function of resonance fluorescence
with perfect time resolution (orwithout coupling to a detector):

t
g

t t= - +s
s

s
s s

g t- s
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )( )g

R
R R1

3

4
sinh cosh e , B.72 3 4

in terms of g= - Ws s s( ) ( )R 4 22 2 . Note that g=s sW ls Rlim 40 and that oscillations only appear in ts ( )( )g 2

whenΩσ>γσ/8, as the two-level system enters into strong couplingwith the laser.
On the other hand, the normalised steady state spectrumof emissionwith perfect frequency resolution

[2, 68], is defined as

òw
p

s s t t=
á ñ

á ñs
s

wt
¥

( ) ( ) ( )†RS
n

1
e d . B.8

0

i

Substituting the expression found for the correlator s s tá ñ( )† in equation (B.5) and expanding up to second
order in the drivingΩσ, we obtain the formula(3) in themain text.

The expression after convolutionwith a detector with spectral resolutionΓ is:

òw
p

s s t t=
á ñ

á ñs
s

w t
G

¥
-G( ) ( ) ( )† ( )RS

n

1
e d , B.9,

0

i 2

which is used to obtain equation (12).
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