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Ultrafast Control and Rabi Oscillations of Polaritons
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We report the experimental observation and control of space and time-resolved light-matter Rabi
oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control
can be implemented with amplification or switching off of the oscillations and even erasing of the polariton
density by optical pulses. The data are reproduced by a quantum optical model with excellent accuracy,
providing new insights on the key components that rule the polariton dynamics.
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Rabi oscillations [1] are the embodiment of quantum
interactions: when a mode a is excited and is coupled to a
second mode b, the excitation is transferred from a to » and
when the symmetric situation is established, the excitation
comes back in a cyclical unitary flow. When this occurs at
the single particle level between two-level systems, it
provides the ground for qubits [2], which, if they can be
further manipulated, opens the possibility to perform
quantum information processing [3]. Such an oscillation
is of probability amplitudes and therefore is a strongly
quantum mechanical phenomenon, that involves maxi-
mally entangled states

W (1)) = a(t)[14.0p) + B(1)[04: 1) (1)

The same physics also holds, not at the quantum level, but
with coherent states of the fields, a situation known in the
literature as implementing an “optical atom” [4] or a
“classical two-level system” [5]. The oscillation is then
more properly qualified as “normal mode coupling” [6,7]
as it is now between the fields themselves,

lw (1)) = la(e))5(2)), 2)

rather than their probability amplitudes. The denomination
of Rabi oscillations remains, however, popular also in this
case [8,9]. While of limited value for hardcore implemen-
tation of quantum information processing, it is desirable for
fundamental purposes and semiclassical applications to
have access to such classical qubits, or “cebits” [10]. In
particular, they can help to explore the origin and mecha-
nism of nonlocality and parallelization in genuinely
quantum systems [11], as well as providing classical
counterparts useful for proof-of-principle demonstration,
design, and optimization of the actual quantum version
[12]. Such classical two-level systems have been pursued
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for decades [13] and recently enjoyed a boost with the rise of
nanomechanical optics [5,14]. There is another system
which provides an ideal platform to implement both genu-
inely quantum [15] and classical versions [16] of the two-
level system: polaritons [17]. A polariton is by essence a
two-level system, arising from strong light-matter coupling
between a cavity photon and a semiconductor exciton.
In planar microcavities embedding inorganic quantum wells
(QWs), which is the case of interest here, the system has
enjoyed considerable attention for its quantum properties at
the macroscopic level [18], such as Bose-Einstein conden-
sation [19], superfluidity [20,21] and a wealth of quantum
hydrodynamics features [22-25], culminating with the dem-
onstration of possible devices [26,27] and pioneering logical
operations [28]. While Rabi oscillations are at the heart of
polariton physics, they are so fast in a typical microcavity—in
the subpicosecond time range—that they are typically glossed
over and the macroscopic physics of polaritons investigated
in their coarse graining. Pioneering attempts to observe
them showed the inherent difficulty and reported hardly two
oscillations with 3 orders of magnitude loss of contrast each
time [29], attributed to the inhomogeneous broadening of
excitons by the theory [30], which could provide a qualitative
agreement only. Later reports through pump-probe techniques
[31-33],in particular, in conjunction with an applied magnetic
field [34], increased their visibility but remained tightly
constrained to their bare observation. Since polaritons are
increasingly addressed at the single particle level [35,36], it
becomes capital to harness their Rabi dynamics [37].

In this Letter, thanks to significant progress in both the
quality of the structures (the sample description is given
in the Supplemental Material [38]) and in the laboratory
state of the art, we have been able to both neatly observe
and control the microcavity polariton Rabi dynamics.
This brings microcavities one step further as platforms
to engineer various states of light-matter coupling. We can
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span from Rabi oscillating configurations to eigenstate
superpositions, and control them by optical pulses that can
amplify or switch states, thereby achieving the same type of
coherent control recently reported in mechanical systems
[5], but fully optically and with over 9 orders of magnitude
gain in speed. The data offer a perfect quantitative agree-
ment with a fundamental model of light-matter coupling of
two bosonic fields [47], that allows us to pin down the
underlying dynamics and explain which factors play which
role and to which extent, at the highest level of precision
ever attained in a microcavity, thus making such systems
even more suitable for engineering and applications.

A typical experimental observation is shown in Fig. 1(a):
the cavity field oscillates after its excitation by a 130 fs long
and 8 nm energy broad pulse impinging on both branches, as
sketched in Fig. 1(b). The basic interpretation is straightfor-
ward: by exciting both branches, the system is prepared as a
bare state and, not being an eigenstate, oscillates between its
two components. Since polaritons are extended objects, the
oscillation is between two fields, localized in a Gaussian
of width a few tenths of a ym given by the exciting laser.
One can access the complex wave function, i.e., measuring
both its amplitude and phase, by holography, a technique of
increasing use to image polariton fluids for which both of
these components are of crucial importance [48,49]. We
recourse to a variation known as off-axis digital holography
[50], which provides high-quality results by separation of
the diffracted images of an off-axis reference frame and the
signal. We adapted it to support ultrafast and tunable multiple-
pulse experiments, with an overall time resolution of 130 fs
(cf. Supplemental Material [38]). As such, our measurement
does not rely on nonlinear interactions, as in previous works
[31-33], but on interferences only. The power was set to excite
polaritons at a low enough density in order to maintain their
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FIG. 1 (color online). (a) Oscillations observed experimentally
in the cavity field and reproduced theoretically in both the cavity
and exciton fields. (b) The lower (LP) and upper (UP) polaritons
excited by a Gaussian pulse which overlap with the branches
determine the effective state created in the system. (c) The
dynamics can be reduced to that of |{a(¢))|> alone and described
quantitatively by the theory.

bosonic properties in the linear regime. We can thus observe
the subpicosecond linear Rabi oscillations through the coher-
ent fraction |y, (r,1)|* of the cavity field in both space r
and time ¢ (see supplemental movie [41]).

Both the photon-field y, dynamics of the experiment
and the complementary exciton field v, not accessible
experimentally, can be recovered by the usual polariton
field equations [51] (cf. Supplemental Material [38]). As
expected, the exciton field forms as the photon field
vanishes before it is revived as the excitations flow back
from excitons into photons again. Limiting this to cases
with no momentum—although the wave function compo-
nents have a spread in both real and reciprocal spaces—
the system is linear and there is no dynamics imparted by
the spatial degree of freedom. The dynamics can therefore
be reduced to zero dimension between two single harmonic
modes, and the oscillations are fully captured through the
simpler order parameters (a(t)) = (w|aly), accessible
experimentally, and (b(¢)) = (y|b|w). This is shown in
Fig. 1(c) as points, now for the full duration of the
experiment. Twelve oscillations are clearly resolved until
t = 10 ps. Theoretically, the Hamiltonian is reduced to
simply Hy = hwg(a'a + b'b) + hg(a™b + ab"), with cou-
pling strength g between the photonic mode a and the
emitter annihilation operator b, both following Bose
algebra and at energy w, (resonant case), supplemented
with Ho = >, ,P.(t)e™ e'<c" + H.c. This is the most
general case of coherent and resonant excitation, with
coupling to both fields and allowing for a relative phase,
which is necessary to reproduce the data. Although the
excitation is an optical laser shone directly on the cavity,
which is often described theoretically as a cavity-only
coupling term [51-53], it is clear on physical grounds that
such a general form may be required instead: since the
exciton field would still be excited without the cavity, it is
natural that part of the excitation is shared between the
latter and the QWs. While it has little consequence for the
single-pulse excitation, this will be crucial when dealing
with coherent control by a second pulse. This prepares
states of the type of Eq. (2) regardless of the magnitude of
pumping, i.e., classical states that should not be confused
with quantum superpositions of the type of Eq. (1) [54],
which would be extremely difficult to realize and maintain
even for small values of |a|*> and |B|>. By integrating
Schrodinger’s equation 70,y = Hy, one easily finds the
closed-form expression for a(¢) and f(¢) under the dynam-
ics of H= Hy+ Hg (see Supplemental Material [38]).
For the case of an initial state |ag)|fy), [w(t)) reduces
to |ag cos(gr) — ify sin(gr))|—iag sin(gt) + By cos(gr)).
This describes two quantum oscillators, swinging like any
other of their classical counterparts, and that mixes features
of the bare states (which amplitudes oscillate), with those of
the polaritons (with no oscillations of their amplitudes).
From the observation of the oscillation alone, it is therefore
difficult to capture the true dynamics at play. This is where
a theoretical model is needed to shed light on the hidden
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features [47]. As we are going to show, the contrast of the
oscillation is not due to decoherence between the UP and
LP, but to a combination of the short lifetime of the UP and
of the effective state realized by the pulsed excitation.
While the core of the physics is contained in the wave
function |y) of the coupled oscillators under the dynamics
of H, we have to take into account dephasing and decay to
describe any experiment with some degree of accuracy.
These are mainly due to the bare state lifetimes (with decay
rates y,;, for the photon or exciton, respectively), which are
also present in most light-matter coupled systems. In QW
microcavities, additional sources of dephasing are present
for the UP, which is notoriously less visible than its LP
counterpart [55,56]. A contribution from the exciton
reservoir has also been suggested in several works, even
under coherent excitation [57,58]. However, no direct
measurement of its contribution, nor its true nature (coher-
ent or incoherent) has been clearly reported until now. We
can address this issue by including an UP dephasing rate yy
and an incoherent excitonic pumping rate P,. Indeed, both
terms are required to reproduce the data at the level of
accuracy we report. Such terms turn the pure state wave
function into a density matrix p ruled by a master equation.
The theory is standard and is given in the Supplemental
Material [38]. In this case, the complex amplitudes of the
oscillators can also be derived in closed-form expressions.
The experimental modulus square of the cavity amplitude
can then be fitted by the model and other observables
reconstructed from the theory. The fit provides an essen-
tially perfect agreement with the data, as seen in the figures.
By shifting the laser energy to weight more on one branch
than the other, as done for the series displayed in Fig. 2,
different states can be prepared, which are all equally well
accounted for by the theory for the same system parameters.
Note also that both the dynamics of the pulse as well as the
subsequent free oscillations are described within the same
model. From the fit of the experimental |(a(t))[?, we gain
access to the entire dynamics of oscillations, also of the
exciton field |(b(¢))|?, but even further, of the phases (a(t))
and (b(t)) and the total excitations {((a’a)(t)) and
((b™h)(1)) and, in fact, of the full state as a whole through
the density matrix p. This allows us to reconstruct the full
dynamics, as done in Fig. 2 for the joint exciton-photon
oscillations of the experiment (case of 833 nm excitation),
and see the effect of the various factors involved. For
instance, the impact of the reservoir is seen in case I (in a
dashed black line, from now on plotting only the envelope of
the Rabi oscillations for clarity) where its effective pumping
rate P, has been set to zero. Its effect is small but is needed to
reproduce the data quantitatively. The main detrimental actor
is the UP dephasing rate yy, which, if set to zero, consid-
erably opens the envelope of oscillations (case II, yellow
dashed-dotted line). Interestingly, the incoherent reservoir
extends the lifetime of the oscillations as shown in case II
and even more so in case Il (long dashed line) where a higher
pumping rate than that of the experiment brings the oscil-
lations well into the nanosecond time scale, as proposed in

%)

)

B = Pop 15
S
b =

= D

1,70 = Yexps P

|{a(t)}|? (arb. units)

FIG. 2 (color online). Various states created in the system by
varying the pulse energy and their evolution on the Bloch sphere,
showing the systematic relaxation towards the LP. In the inset, the
full exciton-photon dynamics are reconstructed theoretically for the
case @ = 833 nm (photon in red, exciton in blue) and variations
(showing the envelope of the oscillations only) when removing the
effect of the exciton reservoir (I, black dashed), removing the effect
of polariton dephasing (II, dotted-dashed yellow) or, on the
opposite, enhancing the effect of the reservoir (III, long-dashed
blue). Py, and y.y, are the fitted values for the experiment.

Ref. [54], although, as already noted, this is for normal mode
coupling oscillations that cannot be used to engineer a qubit.

The coherent amplitudes of any two-level system can
be mapped on the Bloch sphere as (a)/+/|{a)|> + [(b)|> =
cos(0/2) and (@) + (B} = sin(6/2) exp(ig)
with 6 and ¢ the azimuthal and radial angles of polar
coordinates, respectively. Such trajectories from our experi-
ment are shown for three cases in Fig. 2, corresponding to
predominant UP excitation, equal weight of the branches,
and predominant LP excitation. It is clearly seen in the first
case how the pulse swings the coupled oscillators towards
the upper state and, in all cases, how the system quickly
reaches the LP. This is the clearest observation to date of one
of the most important assumptions of microcavity polariton
physics: the UP is unstable and the system relaxes towards
the lower branch, even though it retains strong coupling. In
the model, this UP dephasing rate yy, could be either an
escape rate (like a lifetime due to, e.g., scattering to high-k
exciton states), a pure dephasing rate, or a combination of
both, as only their sum enters in the equation of the coherent
fraction. The result also shows that although the impinging
laser is very wide in energy, it is possible to prepare the
polariton state in a largely tunable range, from almost
entirely upper polaritonic (at least for short times) to almost
entirely lower polaritonic (also the state at long times),
passing by purely photonic and/or excitonic, these two states
constantly oscillating between each other.
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With such an accurate command of the system, we are
able to time precisely the arrival of a second pulse and
perform a comprehensive coherent control on the coupled
dynamics. For a coupling of the laser to the cavity only, this
would be achieved for most operations by sending the
control pulse when the cavity field is empty and the state is
fully excitonic. Injecting a second fully photonic pulse in
optical (antioptical) phase with the exciton, for instance,
creates an UP (LP). It is convenient to represent such a
dynamics with the joint photon and exciton fields’ complex
phases, as shown in Fig. 3(a) for a sequence of basic
operations through pulsed excitation that bring the system
from (i) the vacuum and (vi) back passing by a coherent
state of (ii) photons, (iii) UPs, (iv) excitons, and (v) LPs.
The photon and exciton states are defined as such right after
the pulse only since, not being eigenstates, they enter the
oscillating regime. In the rotating frame of the bare modes at
frequency wy, the light-matter dynamics is a simple oscil-
lation along the radius with a combined offset of z/2 both in
time and optical phase: the cavity oscillates horizontally
while the exciton oscillates vertically and when one reaches
its maximum, the other is at the origin. In contrast, the LP
and UP do not oscillate radially but circularly, since they are
free modes that subtract and add, respectively, their free
energy to that of the rotating frame. An animation of this
dynamics is given in the Supplemental Material [45].
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FIG. 3 (color online). (a) Succession of various dynamical
evolutions in time of the photon (dashed yellow) and the exciton
(green) complex amplitudes (here with fixed modulus) that can be
passed from one to the other with an appropriate pulse excitation.
Normal mode-coupling features a /2 dephasing in both time and
optical phase and oscillate radially while polaritons oscillate
circularly. Furthermore, they oscillate jointly and with (7 out of
phase with each other and against) the rotating frame in the case
of a UP (LP). (b)-(d) Experimental realization (points) and
theoretical fit (solid curve) of three two-pulses excitation, show-
ing (b) amplification, (c) transition from an exciton-photon Rabi
oscillation to a LP, and (d) field annihilation.

In the actual experiment, where the laser couples to both
fields, one merely needs to correct for the corresponding
proportions but the concept is otherwise the same. A first
pulse triggers the Rabi oscillations, since our pulse is broad
in energy and always initiates a dominant photon or exciton
fraction. However, with a second pulse, although still
broad, we can refine the state by providing the comple-
mentary of the sought target. Figure 3(b) shows a simple
case of Rabi amplification, where the same cycle is
restarted by the pulse. Figure 3(c) shows the case where
a bare state is transformed into a LP, therefore switching off
the oscillations. There is no fundamental difficulty in sending
more than two pulses and, in principle, one can prepare any
given state right after the pulses. Another case of interest is
complete field annihilation, by sending a pulse optically out
of phase but in phase with the Rabi oscillations. This
produces, by destructive interferences, the vacuum, as shown
in Fig. 3(d). All these cases demonstrate the possibility to do
coherent control of the strong light-matter coupling dynam-
ics. Here too the theory still provides an essentially perfect
agreement to the data. Similar prospects at the single-particle
level would perform genuine quantum information process-
ing, but this lies beyond the scope of this work.

In conclusion, we showed the tremendous control that can
be obtained on the light-matter coupling in microcavities, for
which we reported the first imaging of its spatiotemporal
evolution thanks to our femtosecond holographic multiple-
pulse excitation. This allowed us to spell out with a precision
never achieved before for polaritons both the excitation
scheme and the various components involved in the dynam-
ics (dephasing, reservoirs, etc.). We demonstrated the
reservoir-induced lifetime enhancement recently proposed
[54] and performed coherent control on the polariton state.
Such results are a milestone to turn these systems into
devices, with future prospects such as optical gates or their
single-particle counterpart now clearly in sight. Immediate
extensions suggested by this work are—beyond getting to
the single-particle limit—to couple to the spatial degree of
freedom with packets imparted with momentum or diffusing,
and involve nonlinearities at higher pumpings.
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