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Topological order and thermal equilibrium in
polariton condensates
Davide Caputo1,2, Dario Ballarini1*, Galbadrakh Dagvadorj3,4, Carlos Sánchez Muñoz5,
Milena De Giorgi1, Lorenzo Dominici1, KennethWest6, Loren N. Pfei�er6, Giuseppe Gigli1,2,
Fabrice P. Laussy7,8, Marzena H. Szymańska3 and Daniele Sanvitto1,9

The Berezinskii–Kosterlitz–Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation
of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold
atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-
polaritons, bosonic light–matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic
for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same
algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of
the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long
polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of
coherence both in space and time is required to characterize driven–dissipative phase transitions and enable the investigation
of topological ordering in open systems.

Collective phenomena which involve the emergence of an
ordered phase in many-body systems have a tremendous
relevance in almost all fields of knowledge, spanning from

physics to biology and social dynamics1,2. Although the physical
mechanisms can be very different depending on the system consid-
ered, statistical mechanics aims at providing universal descriptions
of phase transitions on the basis of few and general parameters,
the most important ones being dimensionality and symmetry3–5.
The spontaneous symmetry breaking of Bose–Einstein condensates
(BEC) below a critical temperature TC>0 is a remarkable example
of such a transition, with the emergence of an extended coherence
giving rise to a long-range order (LRO)6–8. Notably, in infinite sys-
tems with dimensionality d≤2, true LRO cannot be established at
any finite temperature9. This is fundamentally due to the presence
of low-energy, long-wavelength thermal fluctuations (that is, Gold-
stone modes) that prevail in d≤2 geometries.

BKT phase transition
However, if we accept a lower degree of order, characterized by
an algebraic decay of coherence, it is still possible to make a clear
distinction between such a quasi-long-range-ordered (QLRO) and
a disordered phase in which the coherence is lost in a much faster,
exponential way. Such transitions, in two dimensions (2D) and at
a critical temperature TBKT > 0, are explained in the Berezinskii–
Kosterlitz–Thouless theory (BKT) by the proliferation of vortices—
the fundamental topological defects—of opposite signs10. This
theory is well established for 2D ensembles of cold atoms in
thermodynamic equilibrium, where the transition is linked to
the appearance of a linear relationship between the energy and
the wavevector of the excitations in the quasi-ordered state11.
The joint observation of spatial and temporal decay of coherence

has never been observed in atomic systems, mainly because of
technical difficulties in measuring long-time correlations. These
are important observables to bring together because an algebraic
decay, with the same exponent α, for both the temporal and spatial
correlations of the condensed state, implies a linear dispersion for
the elementary excitations12–14.

Phase transition in open systems
On the other hand, semiconductor systems such as microcavity
polaritons (dressed photons with sizeable interactions mediated
by the excitonic component) appear to be, since the report of
their condensation15–17, ideal platforms to extend the investigation
of many-body physics to the more general scenario of phase
transitions in driven–dissipative systems18. However, establishing if
the transition can actually be governed by the same BKT process
as for equilibrium system has proven to be challenging from both
the theoretical19–21 and experimental perspective22–24. Indeed, the
dynamics of phase fluctuations is strongly modified by pumping
and dissipation, and the direct measurement of their dispersion by
photoluminescence and four-wave-mixing experiments is limited
by the short polariton lifetime, by the pumping-induced noise,
and by the low resolution close to the energy of the condensate.
Moreover, the algebraic decay of coherence has been experimentally
demonstrated only in spatial correlations, whereas only exponential
orGaussian decays of temporal coherence, which are not compatible
with a BKT transition, have been reported until now25–28. The lack
of a power-law decay of temporal correlations is a robust argument
against a true BKT transition, as will be demonstrated later on with
a straightforward counter-example of a strongly out-of-equilibrium
system. For this reason, it has been a constant matter of interest
what is the nature of the various polariton phases, what are the
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Figure 1 | Pumping mechanism and interferometric set-up. a, Sketch of polariton relaxation in space (x,y) and energy (vertical axis). The carriers, injected
by the pumping laser, relax quickly into excitonic states (yellow area) spatially confined within the pumping spot region. E�cient scattering from the
exciton reservoir into polariton states results in a region of high polariton density (red area) which expands radially. During the expansion, the long lifetime
allows for polariton relaxation into lower energy states and eventually, at high power, into the ground state. Above a threshold power, an extended 2D
polariton condensate (blue area) is formed outside of the pumped region. b, Interferogram of the region in the black-dashed rectangle in c. The black dot at
the centre indicates the autocorrelation point r0. c, 2D real-space image of the emitted light (arbitrary intensity units in a colour scale) from a portion of
the condensate. To visualize only the bottom energy state in 2D images, the emission coming from |k|< 1 µm−1 has been selected in the far field to avoid
the contribution of higher-energy polaritons. The yellow, dashed circle indicates the blue-shifted region corresponding to the position of the laser spot.
d, Scheme of the interferometric set-up: R, retroreflector; BS, beam splitter; D, long delay line. The retroreflector R is a three-mirror corner reflector used to
reflect the image at the central point r0 before sending it back towards the BS.

observables that allow one to determine a QLRO, if any, and how
they compare with equilibrium 2D condensates and with lasers29–35.

Equilibrium vs out-of-equilibrium
Recently, thanks to a new generation of samples with record
polariton lifetimes, the thermalization across the condensation
threshold has been reported via constrained fitting to a
Bose–Einstein distribution, suggesting a weaker effect of dissipation
in these systems36. However, to unravel the mechanisms that drive
the transition, and characterize its departure from the equilibrium
condition, it is crucial to measure the correlations between distant
points in space and time as we move from the disordered to the
quasi-ordered regime13,14,37,38. So far, all attempts in this direction
have been thwarted, not only because of the polariton lifetime being
much shorter than the thermalization time and the fragmentation
induced by sample inhomogeneities39,40, but also because of the
small extent of the condensate. Indeed, earlier measurements of
coherence25,41,42 were limited to the small spatial extension of the
exciton reservoir set by the excitation spot, which could result in an
effective trapping mechanism43 and finite-size effects30.

BKT transition in exciton-polaritons
In this work, using a high-quality sample (in terms of long life-
times and spatial homogeneity) to form and control a reservoir-free
condensate of polaritons over a largely extended spatial region, we
make the first observation in any system of the transition to a QLRO
phase in both the spatial and temporal domains. Remarkably, the
convergence of spatial and temporal decay of coherence allows us to
identify the connection with the classic equilibrium BKT scenario,
inwhich for systemswith linear spectrum the exponents take exactly
the same value α≤ 1/4 (ref. 14). Stochastic simulations tuned to
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Figure 2 | Two-dimensional first-order spatial correlations. a–f, Maps of
|g(1)(r)| as extracted from the interferogram (Fig. 1b) relative to an area of
the sample of approximately 80 µm× 60 µm and corresponding to
di�erent densities d= (0.05, 0.3, 0.5, 1.3, 3.0, 4.0)dth in a–f, respectively.
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Figure 3 | Coherence decay and BKT phase transition. a–c, Spatial decay of |g(1)(1x)| (logarithmic scale) and corresponding fitting residuals (linear scale)
for: d=0.1dth exponential decay (blue data) (a), d= 1.4dth stretched-exponential decay (green data) (b) and d=2.75dth power-law decay (red data) (c).
d–f, Temporal decay of |g(1)(1t)| (logarithmic scale) and corresponding fitting residuals (linear scale) for: d=0.15dth Gaussian decay (yellow data) (d),
d= 1.3dth stretched-exponential decay (green data) (e) and d=2.7dth power-law decay (red data) (f). Note that the value of |g(1)(0)|< 1 is due to the
time-averaged detection that globally reduces the visibility of the interferograms, without changing the slope of the correlations decay (see Supplementary
Information). g,h, Blue line: β exponent evaluated by stretched-exponential fitting of |g(1)(1x)| in g, and |g(1)(1t)| in h, versus the corresponding polariton
densities. Red line: α exponent evaluated by power-law fitting of |g(1)(1x)| in g, and |g(1)(1t)| in h, versus the corresponding polariton densities. The same
colour legend used in a–f indicates the corresponding densities (square markers) in g and h. Error bars are obtained from the fitting parameters (see
Supplementary Information).

the experimental conditions, which reproduce the observations in
both space and time, further allow us to track vortices in each
realization of the condensate, confirming the topological origin of
the transition. All these results settle the BKT nature of the 2D phase
transition for polaritons in high-quality samples, providing the equi-
librium limit of driven–dissipative systems. For shorter lifetimes,
it is known that the transition departs from the equilibrium con-
dition28 and, at larger densities, different mechanisms will prevail
over topological ordering44. We show here that for a strongly out-of-
equilibrium microcavity (in the weak coupling regime), the power-
law decay of the first-order coherence is observed only in space but
not in time. We therefore demonstrate not only that low-density
polariton condensates can undergo an equilibrium BKT transition
like cold atoms, but also that spatial correlations alone do not allow
one to distinguish between a photon laser and a BKT phase.

Formation of a polariton condensate
The mechanism used to form an extended polariton condensate is
sketched in Fig. 1a. The sample is excited non-resonantly (details
in Supplementary Information), leading to the formation of an
exciton reservoir (yellow region in Fig. 1a) which is localized
within the pumping spot area due to the low exciton mobility. In
turn, the repulsive interactions between excitons induce a blueshift
of the polariton energy at the centre of the pumping spot (the
dashed-white line in Fig. 1a shows the contour along the x direction
and crossing the excitation spot). As can be seen, the exciting beam
generates an energy blueshift corresponding to the Gaussian profile
of the laser. Polaritons, which are formed in the exciton reservoir
through energy relaxation, are much lighter particles than excitons
and are accelerated outwards from the centre of the spot by the
potential landscape45,46. We have recently demonstrated that in
high-quality 2D samples, the cloud of expanding polaritons relaxes
through incoherent scattering processes into the ground state: when

the stimulated scattering prevails over losses, a uniform polariton
condensate is formed over a wide spatial region outside the area of
the pumping spot47. The light emitted by the sample carries all the
information about the spatio-temporal correlations of the polariton
field, which can be extracted as follows: the interferograms (Fig. 1b)
are obtained by selecting a sample region without the exciton
reservoir, such as the one indicated by a dashed rectangle in Fig. 1c,
that is directed into theMichelson interferometer outlined in Fig. 1d.
Here, the image is duplicated in the beam splitter and reflected
around the central point r0 in one arm of the interferometer, giving
the interferogram shown in Fig. 1b. The first-order correlation
function at equal time g (1)(r,−r) (r0= 0 is assumed) can then be
measured between any two points symmetric about r0 as a function
of their separation |2r| following the same method used in ref. 16
and reported in the Supplementary Information. The temporal
coherence g (1)(t , t +1t) is measured by moving the long delay
line, covering a distance corresponding to a temporal delay of more
than 200 ps.

Spatial correlations and decay exponents
The 2D maps of |g (1)(r,−r)|, extracted from the interferograms,
are shown in Fig. 2 for different values of the polariton density
d in the lowest-energy state. The spatial extent of coherence,
limited to the autocorrelation point at low densities (Fig. 2a–c),
extends over larger distances above a threshold density dth (Fig. 2d),
indicating that stimulated scattering starts prevailing over losses
(see Supplementary Information). For larger densities, a higher
level of coherence is sustained over a wider spatial region of
about 80 µm × 60 µm (Fig. 2e). The longer coherence length for
d>dth is unrelated to the dynamics of higher-energy polaritons
and corresponds to the formation of a uniform phase in the
ground state over distances much larger than the healing length (see
Supplementary Information). As shown in Fig. 2f, increasing further
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Figure 4 | Decay of coherence from stochastic analysis of a homogeneous system. a,c,e, Spatial decay of coherence. Respectively, an exponential decay, a
stretched exponential with β=0.67, and a power-law decay with α=0.20. b,d,f, Temporal decay of coherence. Respectively, a stretched exponential with
β=0.41, a stretched exponential with β=0.27, and a power law with α=0.20. These three cases are indicated in g with blue, green and red vertical
dashed lines. g, Exponents β of the stretched-exponential fit, for spatial (blue) and temporal decay (green). Exponents α of the power-law fitting for spatial
(red) and temporal decay (orange).

the excitation power results in the shrinking of the spatial extension
of coherence due to the additional dephasing induced by the pump
and the formation of excited states at higher energies46.

In Fig. 3, we analyse the behaviour of coherence close to the den-
sity threshold in a more quantitative way. The horizontal line profile
of |g (1)(x ,−x)| passing through r0, for 1x > 0 (with 1x≡2x),
is studied for increasing pumping powers (Fig. 3a–c). To allow
a uniform description across the transition, both power-law and
stretched-exponential functions are used in the fitting procedure:

|g (1)(x ,−x)|=A|2x|−α (1)

|g (1)(x ,−x)|=Ae−B|2x|
β

(2)

with B a scale parameter for the x-axis and A ≤ 1 a space-
independent amplitude factor (see Supplementary Information).
For d<dth, the decay is exponential and is well fitted by equation (2)

with β ≈ 1 (Fig. 3a). Approaching d = dth, the spatial decay of
g (1) becomes slower, but still faster than a power law (Fig. 3b).
This transition regime is best described by a stretched-exponential
decay (β < 1) that becomes a power law only at slightly higher
densities d≈2.7dth (Fig. 3c) when a high degree of spatial coherence
(>50%) extends over distances of approximately 50 µm. Remark-
ably, the slow decay shown in Fig. 3c can be best characterized
by the exponent α= 0.22 (see Supplementary Information for a
comparison between the different functional behaviours). In Fig. 3g,
the α and β exponents are reported for different densities (α can
be extracted only for d> dth), showing the whole behaviour of the
coherence decay across the transition into the QLRO. However, as
will be shown in the following, it is essential to verify that a similar
behaviour is also observed for the temporal correlations.

Temporal correlations
In Fig. 3d–f, the temporal coherence at the autocorrelation point
|g (1)(t , t+1t)| is shown for three different polariton densities. In
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Fig. 3h, the α and β exponents of equations (1) and (2) that best
fit the experimental data are shown across the transition. Below
threshold, coherence decays quickly and follows a Gaussian slope
(β≈ 2). At d = 1.3dth, the temporal coherence can be best fitted
by equation (2) with an exponent β ≈ 0.8 (or, with a slightly
worst fit, with a power law of exponent α ≈ 0.57), whereas at
d ≈ 2.7dth, the long-time behaviour clearly follows a power law
with α= 0.2. The residuals analysis proves the agreement between
the experimental data and the fitting model (see Supplementary
Information). Crucially, also for time correlations, α< 0.25, which
coincides, within the experimental accuracy, with the one obtained
from the spatial coherence at the corresponding density.

Theoretical analysis
We performed complementary theoretical analysis, based on the
exact solution of the stochastic equations of motion21, with the
same microscopic parameters as the ones of the experiment. Our
approach, which can be derived either from Keldysh field theory48
or the Fokker–Planck equations for the Wigner function18, is able
to treat fluctuations beyond the mean field approximations and
describes the dynamics of the whole field, accounting for both
normal and superfluid polaritons (see Supplementary Information).
Differently from previous works25, the condensate forms outside of
the exciton reservoir—which is therefore not included in the model.
Moreover, the process of injection and expansion of polaritons is
described as an effective pumping mechanism, without assuming
any particular constraint on the incoherent polariton population,
and also the energy relaxation is not externally imposed by any
specific term, given that the whole physics, including thermalization
and condensation, can be self-consistently obtained from the
stochastic model (see Supplementary Information). This is indeed
themost general setting used in statistical mechanics to describe the
effect of external driving, dissipation and many-body interactions
on the phase transitions in open quantum systems38,48. Here we
observe the same crossover from an exponential via stretched
exponential to an algebraic decay of coherence in space and time
(Fig. 4) as for the experimental measurements. In particular, we
see the spatial and temporal α being the same, and always smaller
than 1/4 above the BKT threshold (Fig. 4g), showing that drive and
dissipation do not prevail in this good-quality sample, in contrast to
the earlier studied non-equilibrium cases21,25.

Additionally, although the vortex–antivortex binding cannot
be directly observed in the experiments, which average over
many realizations, the numerical analysis is able to track the
presence of free vortices in each single realization, confirming the
topological origin of the transition. Indeed, we see clearly that,
in the algebraically ordered state, free vortices do not survive
and the pairing is complete (Fig. 5 right column). In contrast,
the exponential and stretched-exponential regimes both show the
presence of free vortices (Fig. 5 left), the number of which decreases
as we move across the transition. Since the stretched-exponential
phase is always associated with some presence of free vortices,
this supports that we are observing a BKT crossover rather than
a Kardar–Parisi–Zhang (KPZ) phase19. It is interesting to note
here that the KPZ physics is indeed the paradigmatic model for a
genuinely non-equilibrium phase transition, and its manifestation
in the optical domain of polariton condensates is currently at the
centre of intense investigation38. However, the expected critical
length for the KPZ phase is beyond the experimentally achievable
length scales in our long-lifetime, incoherently driven microcavity
(see Supplementary Information for further discussion).

Spatial and temporal correlations in a laser
Finally, to demonstrate the importance of the simultaneous
observation of space and time correlations for optical systems, and
in general as wemove from equilibrium towards out-of-equilibrium,
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Figure 5 | Vortex–antivortex distribution map. Top: vortices (V) in red and
anti-vortices (AV) in black just before (left) and after (right) the BKT
transition with parameters as in Fig. 4c,e, respectively. Middle to bottom:
the same as top but after filtering o�, in two steps, high-momentum states
to eliminate bound pairs. Such filtering reveals the presence of free vortices.
Note that there are no free vortices when spatial and temporal coherence
show algebraic decay (right), but there are some free vortices in the case of
stretched-exponential decay of coherence (left). The underlying colour
map shows the phase profile of the field.

we analyse the coherence behaviour of a microcavity where
driven–dissipative dynamics clearly prevail. Using a sample with
a lower quality factor and less quantum wells, we induce, under
high non-resonant pumping, the photon-laser regime as in a vertical
cavity surface emitting laser (VCSEL)44,49. Despite the fact that this
system is strongly out-of-equilibrium, it shows a power-law decay
of spatial coherence with α=0.25 (Fig. 6a), although limited by the
pumping spot region (with a radius of about 10 µm). Remarkably,
the behaviour of spatial correlations is very similar to what was
obtained in ref. 25, but the temporal coherence, shown in Fig. 6b,
follows a quasi-Gaussian decay, not compatible with the algebraic
order characteristic of the BKT phase. This shows that a consistent
behaviour between time and space is necessary to evidence the BKT
transition in driven–dissipative systems.

Conclusions and outlook
The formation of an ordered phase in 2D driven–dissipative
ensembles of bosonic quasiparticles is observed in both spatial
and temporal correlations across the transition. The collective
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Figure 6 | Spatial and temporal coherence in weak coupling regime. a, Spatial coherence showing a power-law decay with α=0.25. b, Temporal decay of
coherence with stretched-exponential fitting exponent β= 1.8.

behaviour of exciton-polaritons in semiconductor microcavities
lies at the interface between equilibrium and out-of-equilibrium
phase transitions, and it has been often compared both to atomic
condensates and to photon lasers.We show that themeasurement of
spatial correlations g (1)(r) alone is not sufficient to establish whether
an open/dissipative system is in the BKT phase. Instead, two distinct
measurements, one in time and one in the space domain, are
needed. Satisfying this requirement, we report a power-law decay
of coherence with the onset of the algebraic order at the same
relative density and comparable exponents for both space and time
correlations. We should stress that the exceptionally long polariton
lifetime in the present sample allows us to reach the BKT phase
transition at low densities, and in a region without the excitonic
reservoir, resulting in a lower level of dephasing and longer time for
thermalization. Moreover, in our experiments, the absence of any
trapping mechanism, be it from the exciton reservoir or potential
minima, allows us to avoid the influence of finite-size effects in
the temporal dynamics of the autocorrelation14. Simulations with
stochastic equations match perfectly the experimental results and
demonstrate that the underlying mechanism of the transition is
of the BKT type—that is, a topological ordering of free vortices
into bound pairs, resulting in the coherence build up both in
space and time. All these observations validate that polaritons can
undergo phase transitions following the standard BKT picture, and
fulfil the expected conditions of thermal equilibrium despite their
driven–dissipative nature. Now that the equilibrium character of
polaritons becomes a tuneable parameter, the study of driven–
dissipative equilibriumphase transitions and of the universal scaling
laws is within reach in this solid state device.

Data availability. The raw experimental and numerical data used
in this study are available from the corresponding author upon
reasonable request.

Received 30 November 2016; accepted 24 October 2017;
published online 4 December 2017

References
1. Stanley, H. E. Scaling, universality, and renormalization: three pillars of

modern critical phenomena. Rev. Mod. Phys. 71, S358–S366 (1999).
2. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics.

Rev. Mod. Phys. 81, 591–646 (2009).
3. Onsager, L. Crystal statistics. I. A two-dimensional model with an

order–disorder transition. Phys. Rev. 65, 117–149 (1944).
4. Landau, L. D. & Lifshitz, E. M. Statistical Physics Vol. 5

(Butterworth-Heinemann, 1980).
5. Hohenberg, P. & Halperin, B. Theory of dynamic critical phenomena. Rev.

Mod. Phys. 49, 435–479 (1977).
6. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation and Superfluidity

(Oxford Univ. Press, 2016).
7. Kohl, M. et al . Criticality and Correlations in Cold Atomic Gases. in Advances

in Solid State Physics Vol. 47 (ed. Haug, R.) 79–88 (Springer, 2008);
https://link.springer.com/chapter/10.1007/978-3-540-74325-5_7

8. Braun, S. et al . Emergence of coherence and the dynamics of quantum phase
transitions. Proc. Natl Acad. Sci. USA 112, 3641–3646 (2015).

9. Mermin, N. D. &Wagner, H. Absence of ferromagnetism or
antiferromagnetism in one- or two-dimensional isotropic heisenberg models.
Phys. Rev. Lett. 17, 1133–1136 (1966).

10. Minnhagen, P. The two-dimensional coulomb gas, vortex unbinding, and
superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).

11. Steinhauer, J., Ozeri, R., Katz, N. & Davidson, N. Excitation spectrum of a
Bose–Einstein condensate. Phys. Rev. Lett. 88, 120407 (2002).

12. Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of
two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

13. Szymanska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum
condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96,
230602 (2006).

14. Szymańska, M. H., Keeling, J. & Littlewood, P. B. Mean-field theory and
fluctuation spectrum of a pumped decaying Bose–Fermi system across the
quantum condensation transition. Phys. Rev. B 75, 195331 (2007).

15. Richard, M., Kasprzak, J., Romestain, R., Andre, R. & Dang, L. S. Spontaneous
coherent phase transition of polaritons in CdTe microcavities. Phys. Rev. Lett.
94, 187401 (2005).

16. Kasprzak, J. et al . Bose–Einstein condensation of exciton polaritons. Nature
443, 409–414 (2006).

17. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein
condensation of microcavity polaritons in a trap. Science 316,
1007–1010 (2007).

18. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85,
299–366 (2013).

19. Altman, E., Sieberer, L. M., Chen, L., Diehl, S. & Toner, J. Two-dimensional
superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X 5,
011017 (2015).

20. Wachtel, G., Sieberer, L., Diehl, S. & Altman, E. Electrodynamic duality and
vortex unbinding in driven–dissipative condensates. Phys. Rev. B 94,
104520 (2016).

21. Dagvadorj, G. et al . Nonequilibrium phase transition in a two-dimensional
driven open quantum system. Phys. Rev. X 5, 041028 (2015).

22. Utsunomiya, S. et al . Observation of Bogoliubov excitations in
exciton-polariton condensates. Nat. Phys. 4, 700–705 (2008).

23. Kohnle, V. et al . From single particle to superfluid excitations in a dissipative
polariton gas. Phys. Rev. Lett. 106, 255302 (2011).

24. Kohnle, V. et al . Four-wave mixing excitations in a dissipative polariton
quantum fluid. Phys. Rev. B 86, 064508 (2012).

25. Roumpos, G. et al . Power-law decay of the spatial correlation function in
exciton-polariton condensates. Proc. Natl Acad. Sci. USA 109,
6467–6472 (2012).

26. Krizhanovskii, D. N. et al . Dominant effect of polariton-polariton interactions
on the coherence of the microcavity optical parametric oscillator. Phys. Rev.
Lett. 97, 097402 (2006).

27. Love, A. P. D. et al . Intrinsic decoherence mechanisms in the microcavity
polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).

28. Kim, S. et al . Coherent polariton laser. Phys. Rev. X 6, 011026 (2016).
29. Dihel, S. et al . Quantum states and phases in driven open quantum systems

with cold atoms. Nat. Phys. 4, 878–883 (2008).
30. Keeling, J., Szymańska, M. H. & Littlewood, P. B. Keldysh Green’s Function

Approach to Coherence in a Non-Equilibrium Steady State: Connecting
Bose–Einstein Condensation and Lasing 293–329 (Springer, 2010).

31. Kirton, P. & Keeling, J. Nonequilibrium model of photon condensation.
Phys. Rev. Lett. 111, 100404 (2013).

32. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs.
photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100,
15318–15323 (2003).

6

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATUREMATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials

http://dx.doi.org/10.1038/nmat5039
https://link.springer.com/chapter/10.1007/978-3-540-74325-5_7
www.nature.com/naturematerials


NATUREMATERIALS DOI: 10.1038/NMAT5039 ARTICLES
33. Butov, L. V. Solid-state physics: a polariton laser. Nature 447, 540–541 (2007).
34. Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of

photons in an optical microcavity. Nature 468, 545–548 (2010).
35. Fraser, M. D., Hofling, S. & Yamamoto, Y. Physics and applications of

exciton-polariton lasers. Nat. Mater. 15, 1049–1052 (2016).
36. Sun, Y. et al . Bose–Einstein condensation of long-lifetime polaritons in thermal

equilibrium. Phys. Rev. Lett. 118, 016602 (2017).
37. Chiocchetta, A. & Carusotto, I. Non-equilibrium quasi-condensates in reduced

dimensions. Europhys. Lett. 102, 67007 (2013).
38. Keeling, J. et al . in Superfluidity and Phase Correlations of Driven

Dissipative Condensates (eds Proukakis, N.P., Snoke, D. W. & LIttlewood, P. B.)
(Cambridge Univ. Press, 2017).

39. Krizhanovskii, D. N. et al . Coexisting nonequilibrium condensates with
long-range spatial coherence in semiconductor microcavities. Phys. Rev. B 80,
045317 (2009).

40. Sanvitto, D. et al . Spatial structure and stability of the macroscopically occupied
polariton state in the microcavity optical parametric oscillator. Phys. Rev. B 73,
241308(R) (2006).

41. Deng, H., Solomon, G. S., Hey, R., Ploog, K. H. & Yamamoto, Y. Spatial
coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007).

42. Nitsche, W. H. et al . Algebraic order and the Berezinskii–Kosterlitz–Thouless
transition in an exciton-polariton gas. Phys. Rev. B 90, 205430 (2014).

43. Hadzibabic, Z. et al . Berezinskii–Kosterlitz–Thouless crossover in a trapped
atomic gas. Nature 441, 1118–1121 (2006).

44. Bajoni, D. et al . Polariton light-emitting diode in a GaAs-based microcavity.
Phys. Rev. B 77, 113303 (2008).

45. Tosi, G. et al . Sculpting oscillators with light within a nonlinear quantum fluid.
Nat. Phys. 8, 190–194 (2012).

46. Wertz, E. et al . Spontaneous formation and optical manipulation of extended
polariton condensates. Nat. Phys. 6, 860–864 (2010).

47. Ballarini, D. et al . Formation of a macroscopically extended polariton
condensate without an exciton reservoir. Phys. Rev. Lett. 118,
215301 (2017).

48. Sieberer, L. M., Buchhold, M. & Diehl, S. Keldysh field theory for driven open
quantum systems. Rep. Prog. Phys. 79, 096001 (2016).

49. Butté, R. et al . Transition from strong to weak coupling and the onset of lasing
in semiconductor microcavities. Phys. Rev. B 65, 205310 (2002).

Acknowledgements
This work has been funded by the MIUR project Beyond Nano and the ERC project
POLAFLOW (Grant N. 308136). M.H.S. acknowledges support from EPSRC (Grants
No. EP/I028900/2 and No. EP/K003623/2).

Author contributions
D.C. and D.B. took and analysed the data. G.D. and M.H.S. performed stochastical
numerical simulations. C.S.M. and F.P.L. discussed the results. D.C., D.B., C.S.M.,
M.D.G., L.D., G.G., F.P.L., M.H.S. and D.S. co-wrote the manuscript. K.W. and L.N.P.
fabricated the sample. D.S. coordinated and supervised all the work.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Publisher’s note:
Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations. Correspondence and requests for materials should be
addressed to D.B.

Competing financial interests
The authors declare no competing financial interests.

NATUREMATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

7

http://dx.doi.org/10.1038/nmat5039
http://dx.doi.org/10.1038/nmat5039
http://www.nature.com/reprints
www.nature.com/naturematerials

	Topological order and thermal equilibrium in polariton condensates
	BKT phase transition
	Phase transition in open systems
	Equilibrium vs out-of-equilibrium
	BKT transition in exciton-polaritons
	Formation of a polariton condensate
	Spatial correlations and decay exponents
	Temporal correlations
	Theoretical analysis
	Spatial and temporal correlations in a laser
	Conclusions and outlook
	Data availability.

	Figure 1 Pumping mechanism and interferometric set-up.
	Figure 2 Two-dimensional first-order spatial correlations.
	Figure 3 Coherence decay and BKT phase transition.
	Figure 4 Decay of coherence from stochastic analysis of a homogeneous system.
	Figure 5 Vortex–antivortex distribution map.
	Figure 6 Spatial and temporal coherence in weak coupling regime.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests

