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Photon Correlations from the Mollow Triplet

Juan Camilo López Carreño, Elena del Valle, and Fabrice P. Laussy*

Abstract: Photon correlations between the photoluminescence peaks of the
Mollow triplet have been known for a long time, and recently hailed as a
resource for heralded single-photon sources. Here, we provide the full picture
of photon-correlations at all orders (we deal explicitly with up to four photons)
and with no restriction to the peculiar frequency windows that enclose the
peaks. We show that a rich multi-photon physics lies between the peaks, due
to transitions involving virtual photons, and thereby much more strongly
correlated than those transiting through the real states. Specifically, we show
that such emissions occur in bundles of photons rather than as successive,
albeit correlated, photons. We provide the recipe to frequency-filter the
emission of the Mollow triplet to turn it into a versatile and tunable photon
source, allowing in principle all scenarios of photon emission, with
advantages already at the one-photon level, i.e., providing more strongly
correlated heralded single-photon sources than those already known.

1. Introduction

Resonance fluorescence is one of the simplest and yet most fruit-
ful cases of light-matter interaction. It describes the emission
of a two-level system (2LS) that is driven coherently and at the
same frequency than it emits.[1] Following the prediction of its
antibunching emission,[2] it provided the first direct evidence of
quantization of the light field[3] (the photo-electric effect, that sug-
gests it, could also be explained semi-classically). The interfer-
ences between the absorbed and emitted light result in counter-
intuitive effects[4,5] that power one of the best mechanisms for
single-photon emission, currently under fervent development.[6]

Of particular interest is the high excitation regime, described the-
oretically by Benjamin Mollow in 1969[7] and first observed by
crossing at right angle a low-density gas of sodium atoms with
a dye laser beam at resonance with a two-level Na transition (the
F = 2 → 3 hyper-fine transition of the D2 line),[8] an observation
since then repeated in awealth of other platforms.[9–18] The appeal
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of this high-driving fluorescence comes
from its peculiar spectral lineshape, that
takes the form of a triplet (shown in
Fig. 1).
The most elegant physical interpreta-

tion of this triplet describes the 2LS as
dressed by the laser.[19,20] This gives rise
to new eigenstates |±〉, formed from a
combination of bare states

∣∣g, n + 1
〉
and

|e, n〉, where “g”, “e” correspond to the
“ground” and “excited” states of the 2LS,
respectively, and n to the (integer) num-
ber of photons from the laser. A fam-
ily of such states whose total energy is
the same, forms a so-called “manifold
of excitation” (this used to be called a
“multiplicity” but the term “manifold” is
nowadays more common). In every man-
ifold, the eigenstates are split by the Rabi
frequency, while the energy difference

between two contiguous manifolds is that of the bare states, (or
their average if not resonant), as shown in Fig. 1, which displays
fivemanifolds. The transitions between contiguousmanifolds ac-
count for themain features: a triplet in which the integrated spec-
tral intensities of its peaks have 1:2:1 proportions (when the laser
is resonant with the 2LS). The properties of the underlying states
|±〉 have been studied early on, with a good quantitative descrip-
tion from the dressed state picture. Apanasevich and Kilin[21] first
computed in this framework the photon correlations between the
peaks and predicted most of their qualitative cross-correlations,
such as antibunching for each side-peak emission and bunch-
ing between them. Following similar (and independent) the-
oretical predictions from Cohen Tannoudji and Reynaud,[22]

Aspect et al.[23] measured such photon correlations between the
side peaks, confirming the radiative cascade and time-ordering
so naturally explained by the dressed atom picture.[24] Schrama
et al.[25,26] extended the theory to the regime of small correlation
times, which requires to take into account interferences between
the various emitted photons, resulting for instance in antibunch-
ing between a side-peak and a central-peak photons instead of
uncorrelated emission as suggested by the earlier theories. They
obtained excellent quantitative agreement with correlations mea-
sured from the resonance fluorescence of the 1S0 → 1P1 transi-
tion in barium, albeit after several types of corrections to take into
account experimental limitations. This has remained the state
of the art until the recent re-emergence of this problem in the
solid state, with Ulhaq et al.[27]’s revisiting of the photon correla-
tions between the peaks from the resonance fluorescence of an
In(Ga)As quantum dot. Amore recent work brought the two plat-
forms together in an hybrid setup where the quantum dot is fil-
tered by the Faraday anomalous dispersion of a cesium atom.[28]

In these and previous experiments as well as in the bulk of the
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Figure 1. (Color online). The Mollow triplet (spectral lineshape) and its
two-photon spectrum that correlates all the combinations of frequencies
(density plot) with the ladder of dressed states (right) whose transitions
betweenmanifolds account for themain phenomenology: the power spec-
trum at the one-photon level and resonances in the two-photon spectrum.
The manifestations in the two types of spectra of the one- and two-photon
transitions in the ladder are indicated by arrows of corresponding colors.
Of particular interest, the two-photon “leapfrog processes” indicated by
the red, blue and yellow arrows give rise to strong bunching antidiago-
nals in the density plot. The results were obtained by driving the 2LS res-
onantly with the laser pumping rate � = 5γσ and filtering the emission
with a detector of linewidth � = γσ where γσ (the decay rate of the 2LS)
sets the unit. The Rabi frequency, �+, gives the splitting in each manifold
and correspondingly, the position of the side peaks of the Mollow triplet.
The energy of one laser-photon,ωL, is taken as a reference for the variables
ω̃k ≡ ωk − ωL. The color code throughout the text is red for g (2)� > 1, white

for g (2)� = 1 and blue for g (2)� < 1, with the deepest red (blue) set to the
maximum (minimum) value.

theoretical efforts, the photon correlations have thus been lim-
ited to photons from the peaks.Meanwhile, the formal theories of
frequency-resolved photon correlations led to increasingly better
but alsomore intricatemodels that involve heavy computations to
accommodate all the time-orderings of the emitted photons,[29–31]

in particular when expanding the correlations to higher numbers
of photons,[32] and this was typically tackled through approxima-
tions relying on the dressed state picture, which also constrained
the computations to the peaks.
A recent theory of frequency-resolved photon correlations[33]

relaxes these restrictions and permits an exact treatment, to high
photon numbers and for any spectral windows. In the most pop-
ular case of two-photon correlations, this readily provides the
full landscape of all correlations between all combinations of fre-
quencies, enclosing or not the peaks.[34,35] This two-photon cor-
relation spectrum, shown in Fig. 1, unravels a rich structure,
with another triplet of lines, this time at the two-photon level,
corresponding to direct transitions from one manifold to two be-
low, jumping over the intermediate one in a “leapfrog process”,
sketched in the bottom of the ladder in Fig. 1. The auxiliary pho-
ton in any of these processes is virtual (represented by ◦), result-
ing in strong correlations of the emitted pair.[36] This two-photon
spectrum has been measured by Peiris et al.,[37] confirming that

the correlations between the peaks that had been known since the
early years of the Mollow triplet, were particular cases of a wider
picture.
In this text, we provide an exact description of higher-order

photon correlations from the Mollow triplet and propose con-
figurations that extend the realm of possible experiments and
applications that have been explored so far, replacing real-state
transitions by strongly-correlated leapfrog transitions.We also re-
view the state of the art as we introduce notations and the main
formalism.

2. Spectral Shape of the Mollow Triplet

The Mollow triplet is described theoretically by the Hamiltonian
(we set � = 1 along the paper and a tilde is used, here and fur-
ther, over a frequency to refer it to that of the laser, ωL, used as a
reference, i.e., ω̃σ ≡ ωσ − ωL)

Hσ = ω̃σ σ †σ + �(σ † + σ ) , (1)

where σ is the annihilation operator of the 2LS with free energy
ωσ , while the coherent driving is described by the real number
� (amplitude of a classical field) and its energy ωL (absorbed in
the 2LS free energy once in the rotating frame). The dissipative
character of the system is taken into account through the master
equation

∂tρ = i [ρ, Hσ ]+ γσ

2
Lσ ρ , (2)

where γσ is the 2LS decay rate and Lcρ ≡ 2cρc† − c†cρ − ρc†c .
The system enters the strong coupling regime when new eigen-
values emerge from the liouvillian[5]. In this case, which we shall
consider from now on (although not a restriction for the formal-
ism), the spectrum involves three Lorentzians split by

�+ ≡

√
8�2

0 − 6γ 2
σ +

√
9γσ + 16�4

0 − 24γ 2
σ (16�2 + �2

0)

2
√
3

, (3)

with�2
0 ≡ 4�2 + ω̃2

σ . In the limit�0 � γσ , the splitting is simply
�+ ≈ �0 and the two sidebands have the same spectral weight
while the central one decreases with detuning from twice as large
at resonance to zero when ω̃σ � γσ .
While the spectral shape is readily obtained by solving themas-

ter equation, it is better understood on physical grounds as tran-
sitions between the eigenstates |±〉 ≡ (|e, n〉 ± ∣∣g, n + 1

〉
)/

√
2 (at

resonance) introduced earlier. For n � 1—the case of strong-
driving that we will consider—the splitting between |+〉 and |−〉
does not depend appreciably on n. The level structure of an infi-
nite ladder of manifolds, separated by the energy of the laser and
each split by �+, pervades the phenomenology of resonance flu-
orescence in the high-excitation regime. The immediate insight
brought by the one-photon transitions—the central peak being
twice as high because two of the four transitions are degenerate—
shows that this is a powerful tool to guide one’s intuition. In some
regime, the dressed-atom description even becomes exact[20] and
quantitative results can be obtained through rate equations for
the transitions between the states. The transitions that yield the
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central peak, |±〉 → |±〉, leave the state of the 2LS unchanged,
while those that yield the side peaks, |±〉 → |∓〉, change the state
of the 2LS. As detuning changes the light-matter composition of
the dressed states, it can thus be used to tune the triplet’s prop-
erties and control, e.g., the time-ordering of emission.[27] Early
on, it was appreciated on the basis of this picture that subse-
quent cascades between dressed states result in photon correla-
tions. The basic reasoning is equally simple than for explaining
the lineshape. For instance, the cascade |+〉 → |+〉 → |+〉 (id.
with −) leads to bunching from the |+〉 → |+〉 transition, that
corresponds to the central peak. In contrast, |+〉 → |−〉, that cor-
responds to the high-energy side peak, cannot happen twice in
succession, since the final state |−〉 of the first part of the cas-
cade is orthogonal to the initial state |+〉 of the second part, ef-
fectively blocking this path of relaxation. The same holds true for
|−〉 → |+〉, that corresponds to the low-energy side peak, lead-
ing to antibunching for both of these frequencies. Amore careful
analysis is needed for paths with the same initial and final states
that can take different routes through the degenerate transitions
|−〉 → |−〉 and |+〉 → |+〉. This leads to interferences between
their probability amplitudes that forbid the transition rather than
favouring it. This is the case of |−〉 → |±〉 → |+〉, that corre-
sponds to photon emission from one side peak and the central
peak, which is antibunched although it would appear to occur in a
cascade.[25]

3. Leapfrog Processes

Another class of transitions takes place in the same ladder, that
has been overlooked until its identification in the two-photon
spectrum by González Tudela et al.[34] and del Valle[35]. It con-
sists of transitions from one real state to another but involv-
ing two photons |+〉 ⇒ |−〉, three |+〉 →→→ |−〉 or any number,
jumping over as many manifolds as required (one less than the
number of photons involved). There is a strong difference be-
tween |+〉 → |±〉 → |−〉 (a transition that is a cascade between
real states) and |+〉 ⇒ |−〉 (a leapfrog transition that involves
a virtual state). In a cascade between real states, each photon
is real and the first transition takes place independently from
the second. The correlations are thus of a classical character:
the second transition becomes more likely because the first one
reached the state that allows it to take place. In the other case
of a leapfrog transition, the two photons are emitted simultane-
ously, with stronger correlations as the joint emission is intrin-
sic to the process. The correlations in this case are of a quan-
tum character, as each photon does not exist on its own but is
part of a two-photon emission process.[38] This also allows to
relax the conditions on the photons: their individual energies
do not need to match any allowed transition, only their sum
does. This provides the simple equations for the two-leapfrog
processes:

ω̃1 + ω̃2 = 0 , (4a)

ω̃1 + ω̃2 = �+ , (4b)

ω̃1 + ω̃2 = −�+ , (4c)

where ω̃i ≡ ωi − ωL for i = 1, 2.While the conditions Eqs. (4a–c)
can also be satisfied by photons from real transitions, this breaks
the tie by transforming the virtual photons into real ones when
transiting by the intermediate manifold. This mechanism can be
generalized to transitions involving N photons:

ω̃1 + ω̃2 + · · · + ω̃N = 	 , with 	 = −�+, 0, �+ . (5)

Here as well, Eq. (5) can bemet bymatching real transitions, with
any number from one to all the intermediate photons. The most
strongly correlated case corresponds to all intermediate photons
being virtual, in which case we refer to an “N-photon leapfrog”,
hopping over N − 1 intermediate manifolds.
These leapfrog processes can be singled out from the total

emission by spectral filtering, to select the frequencies where the
corresponding photons are expected to be emitted. As character-
istic of a quantum system, the combinatorics aspect quickly be-
comes overriding in the description of the phenomenology. At the
two-photon level, the picture is fully captured by the two-photon
correlation spectrum g (2)�1,�2

(ω̃1, t1; ω̃2, t2) that measures the den-
sity of probability to detect at time t1 one photon of frequency ω̃1

in a window of width �1 and another photon at time t2 of fre-
quency ω̃2 in a window of width �2. Spanning over all the possi-
ble combinations of frequencies provides the type and strength
of correlations in a landscape of correlations,[34,35] as shown in
Fig. 1 for coincidences, t1 = t2, and same filters linewidths � ≡
�1 = �2. When the conditions of Eqs. (4a–c) are fulfilled, strong
correlations are observed indeed in the two-photon spectrum, as
can be seen in Fig. 1 in the form of the three antidiagonal lines,
indicated by the red, blue and yellow arrows. As this has been
widely discussed already,[34–37,39,40] we consider directly the next
order, for which the standard correlation function is that provided
by Glauber for order three, namely, g (3).[41] With frequency filter-
ing, this becomes g (3)�1,�2,�3

(ω̃1, t1; ω̃2, t2; ω̃3, t3). Assuming here as
well the same filter linewidths � and coincidences, t1 = t2 = t3,
we arrive at a 3D correlation spectrum g (3)� (ω̃1, ω̃2, ω̃3), a two-
plane cut of which is shown in Fig. 2 (the details of its com-
putation are given in next Section). It is not easy to visualize a
three-dimensional correlation structure, but we can nevertheless
characterize it fairly comprehensively. It consists essentially of
leapfrog planes of superbunching, which, following Eqs. (5), read
at the three-photon level

ω̃1 + ω̃2 + ω̃3 = 	 , (6a)

but also, as revealed by the exact calculation, of the families of
planes defined by

ω̃1 + ω̃2 = 	 , (6b)

ω̃1 + ω̃3 = 	 , (6c)

ω̃2 + ω̃3 = 	 , (6d)

where in each case 	 is one of the three combinations of ini-
tial/final states transitions, i.e., 	 = −�+ (the red planes in
Fig. 2(b–e)),	 = 0 (blue) and	 = �+ (yellow). The planes from
Eq. (6a) are the three-photon leapfrogs where all the intermedi-
ate photons are virtual, as shown in the upper part of the dressed
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Figure 2. (Color online). High-order correlations from N-photon tran-
sitions in the Mollow triplet. (a) The 3rd-order correlation function
g (3)� (ω̃1, ω̃2, ω̃3) is shown as a two-plane cut in the full-3D structure. The
vertical plane is pinned at a leapfrog transition while the horizontal plane
is pinned at the central peak. The lines observed are superbunching res-
onances that result from the intersections with the leapfrog planes given
by Eqs. (6a-d), and displayed in panels (b-e), respectively. The colors cor-
respond to the different values of 	, namely �+ (shown in yellow), 0
(blue) and −�+ (red). The leapfrog transitions involved are shown in
the ladder of dressed states in panel (f). At the top, the three-photon
leapfrog, Eq. (6a), yield the planes shown in (b). At the bottom of the lad-
der, the cascades of two two-photon bundles, out of which three photons
yield the planes shown in (c-e). Panel (a) was obtained for �+ = 300γσ ,
ω̃σ = 200γσ and � = 5γσ , setting the decay rate γσ of the 2LS as the
unit.

states ladder in Fig. 2(f). The planes from Eqs. (6b–d) corre-
spond to three-photon correlations that involve two two-photon
leapfrog transitions linked by a cascade, namely, with two pho-
tons belonging to one two-photon leapfrog transition while the
third comes from another two-photon leapfrog transition. Alter-
natively, this can be seen as a four-photon leapfrog transition that
intersects a real-state, breaking it in two two-leapfrog transitions.
This is shown in the bottom of the ladder in Fig. 2(f). It is at this
point that the concept introduced by Sánchez Muñoz et al.[36] of a
“bundle”—the N-photon object issued by a leapfrog transition—
becomes handy. The planes in panels (c–e) thus correspond to a
bundle-bundle radiative cascade in the ladder, the same process
as that discussed by Cohen-Tannoudji & Reynaud in the dressed-
atom picture, but here for two-photon bundles instead of two
single-photons. The planes in panel (b) correspond to a single
three-photon bundle transition. The fact that four photons can
team up in this way to provide correlations that appear in the

three-photon spectrum g (3)� is first and foremost a result of the
exact computation, that can be understood in terms of leapfrog
transitions, which, in turn, can make predictions that exact com-
putations can subsequently confirm, as will be shown later on.
The four-photon transitions sketched in Fig. 2(f) are the only pos-
sible ones to account for the observed leapfrog planes (c-e). If one
photon would correspond to a transition between real states, we
would observe lines instead of planes. A four-photon bundle on
the other hand would not constrain two frequencies, as is the
case of Eqs. (6b–d) and, beside, it is known that a fourth-order
process is not detectable by a third-order correlator.[42] Since all
the observed resonances are accounted for by the processes high-
lighted and that, in turn, all these processes produce a resonance
in the computed correlation spectrum, the characterization of the
photon correlations is indeed comprehensive. Before turning to
these exact calculations, we illustrate how the powerful dressed-
atom picture also allows us to make some qualitative statements
on the expected behaviours at the bundle level. Specifically, let us
consider degenerate N-photon bundles, i.e., with all photons hav-
ing the same energy. Such bundles need to change the state of the
2LS, for otherwise they break into real-state transitions. There are
therefore two types of such degenerate bundles, those with pho-
tons of frequency −�+/N and those with photons of frequency
�+/N. Now, for the same reasons as for single photons, one can
expect for two bundles of the same type to be antibunched, as the
2LS has changed state, whereas two bundles of a different type
will form a cascade and can be expected to be bunched. Note that
such a behaviour holds at the level of the bundles rather than at
the level of the photons themselves, that should be bunched in all
cases. Such “predictions” from the leapfrog picture are confirmed
by exact computations.
To get a more quantitative picture, we need to turn to an exact

theory of frequency-resolved three-photon correlations, that we
present in next Section. Importantly, this will confirm that the
leapfrog transitions in Eqs. (6a-6d) are the main three-photon re-
laxation processes. Every red line in Fig. 2(a) is accounted for by
one of the planes in panels (b-e) of Fig. 2, and vice-versa, every
plane produces a red line. This remains true for any other cuts in
the 3D structure (to assist in the visualization of this three-photon
correlation spectrum, we also provide an animated version as
Supplementary Material). The particular case of a real transition
followed by a leapfrog transition, that traces a line in the 3D
structure, is absorbed in one of these planes. In this sense, the
anatomy of three-photon correlations is captured by the leapfrog
planes and therefore remains relatively simple to comprehend.

4. Theory of Frequency-Resolved N-Photon
Correlations

The correlations between N photons detected in as many (possi-
bly degenerate) frequency windows as required, without restrict-
ing ourselves to the peaks, can be computed exactly with the the-
ory of frequency-resolved correlations of del Valle et al.[33] In this
formalism, one computes correlations between N “sensors” (in
the simplest case, each sensor is a 2LS), at the frequencies ωk

to be correlated. Sensors correlations are then computed in the
limit of their vanishing coupling ε to the system (in this text, the
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resonantly fluorescing 2LS). The Hamiltonian describing such a
coupling for the problem at hand is

Hξk = ω̃kξ
†
k ξk + ε

(
σ †ξk + ξ

†
kσ

)
, (7)

where ξk is the annihilation operator of the kth sensor and ω̃k =
ωk − ωL is the detuning between the sensor and the driving laser.
The spectral width of the filters enters in the formalism as the
sensors decay rate �k . The complete master equation of the 2LS
supplemented with the set of sensors then reads

∂tρ = i
[
ρ, Hσ + Hξ

] + γσ

2
Lσ ρ + 1

2
Lξ ρ , (8)

whereHξ ≡ ∑
k Hξk andLξ ρ ≡ ∑

k �k Lξkρ, with the summation
over as many sensors as required for the order of the correlation
(N sensors for g (N)). The two-photon (Fig. 1) and three-photon
(Fig. 2) frequency-resolved correlations are thus computed as:

g (2)� (ω̃1, ω̃2) = 〈ξ †
1 (ω̃1)ξ

†
2 (ω̃2)ξ2(ω̃2)ξ1(ω̃1)〉

〈ξ †
1 (ω̃1)ξ1(ω̃1)〉〈ξ †

2 (ω̃2)ξ2(ω̃2)〉
, (9a)

g (3)� (ω̃1, ω̃2, ω̃3) =

〈ξ †
1 (ω̃1)ξ

†
2 (ω̃2)ξ

†
3 (ω̃3)ξ3(ω̃3)ξ2(ω̃2)ξ1(ω̃1)〉

〈ξ †
1 (ω̃1)ξ1(ω̃1)〉〈ξ †

2 (ω̃2)ξ2(ω̃2)〉〈ξ †
3 (ω̃3)ξ3(ω̃3)〉

, (9b)

with an obvious generalization to higher orders. We have as-
sumed for brevity only the case where all the filters have the same
linewidth, although one can further enhance the correlations by
optimizing the filters linewidths to match the width of the se-
lected resonances. The case of different filter linewidths is fur-
ther discussed in Ref. [39] and one can therefore consider in the
following that there is still room for further improvement. Im-
portantly, the normalization cancels the ε coupling, so that the
result is a fundamental property of the system, only dependent
on the filter linewidths—as is mandatory from the time-energy
uncertainty—but otherwise independent from detectors efficien-
cies, coupling strengths, time of acquisition, etc.
A particular case of interest is the autocorrelation g (N)� (ω̃) when

all the frequencies are degenerate, ω̃1 = · · · = ω̃N . This corre-
sponds to the correlations, at various orders, of the light passing
through a single filter. The cases up to fourth order as computed
with the sensors technique are shown in Fig. 3. Panel (b) con-
firms the known results obtained in the literature[23,26,27] of anti-
bunching for the side peaks, and also of bunching for the main
peak (g (2)� (ω̃ = 0) ≈ 1.05 with our parameters, see caption). Strik-
ingly in the latter case, it is revealed that, in the full picture, this
bunching actually sits in a local minimum and that although the
central peak is indeed bunched, this comes in a region of sup-
pressed bunching, as shown in the inset of Fig. 3(b) (zooming in
the area indicated by the arrow). This feature is not fully conveyed
by the dressed-atom picture. The most notable feature, however,
is one that remained unnoticed until recently:[34] the two strong
resonances that sit between the peaks. These are the leapfrog cor-
relations. Similar results are generalized when turning to higher
orders, as shown in panels (c) (three photons) and (d) (four pho-
tons). While the correlations of the peaks retain the same qualita-
tive behaviours, new features thus appear away from the peaks,

Figure 3. (Color online). Correlations between bundles of N photons.
(a) Photoluminescence spectrum of the Mollow triplet, with the config-
uration of filters that has been proposed for single photon heralding in
Ref. [27], namely, filtering the two side peaks. (b–d) 2, 3 and 4-photon au-
tocorrelation spectrum. The resonances in the photon correlations reveal
the frequencies where the same type of heralding but for N-photon bun-
dles can be achieved. Such frequencies, shown here in gray, are given by
ω̃ = ±�+/N at order N. In red are shown the even better configurations
where the heralding does not involve any transition through a real state.
The inset in Panel (b) shows a zoom of the correlations nearby the central
peak, marked by an arrow, revealing bunching to sit on a local minimum.
The decay rate of the 2LS sets the unit, the splitting of the triplet is set to
�+ = 300γσ , the sensors linewidth to� = 2γσ , and the detuning between
the laser and the 2LS to ω̃σ = 200γσ .

associated to the leapfrog transitions, successively captured by
increasing the order of the correlations. These resonances, at
±�+/N, pile up toward the central peak, and become increas-
ingly difficult to access individually, as however can be expected
from such strongly quantum objects involving a large number of
particles.
While these cuts in the Nth-order correlation spectrum are

useful and will be later referred to again—being so-closely
connected to degenerate bundles—they provide a very simplified
account of the structure of the correlations at the N-photon level.
The case for N = 3 photons, displayed in Fig. 2(b) in two planes
that intersect the full 3D spectrum, provides the full picture
at this order, on the basis of which one can best exploit the
photon emission. We will not discuss the antibunching patterns,
whose intersections in the density plot produce in addition to
straight lines, also a circular shape that is still of unclear physical
origin but is not relevant for the points of this text. We will
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now discuss how intercepting the red superbunching lines in
the general three-dimensional space, that originate from the
leapfrog planes in panels (b–e) of Fig. 2, allows to design a new
family of heralded N-photon emitters.

5. Sources of Heralded Photons

With the formalism introduced in previous Section, it is straight-
forward to compute the exact frequency-resolved peak-peak cor-
relations studied by Ulhad et al.[27] This includes their time-
resolved version, beyond the coincidences that we have consid-
ered so far. The theory then needs to take proper care of time-
ordering, which is however easily achieved with the sensors tech-
nique. The procedure to follow is presented in Ref. [33] and
the underlying theory is detailed in its supplementary material.
Since we consider here a system in its steady state, only relative
time differences τ ≡ t2 − t1 are of interest. Some frequency- and
time-resolved correlations for the Mollow triplet are shown in
Fig. 4(a), at both resonance (blue curves) and with a detuning
between the 2LS and the laser frequencies (red curves). We com-
pare the exact (solid) and approximated (dashed) solutions, ob-
tained through the sensing formalism and the earlier theories,
respectively. There is an excellent qualitative if not quantitative
agreement. In the case of laser detuning, the asymmetric shape
lends itself to heralding purposes, whereby detection of a photon
from the high-energy peak correlates strongly with the detection
of another photon from the low-energy peak.
The great advantage of the theory of frequency-resolved pho-

ton correlations[33] is that it also allows to compute exactly cor-
relations in more general configurations than those restricted to
the peaks. For instance, correlating the photons emitted by the
leapfrog processes, by filtering at the corresponding frequencies,
one gets the correlation function shown in Fig. 4(b), with sev-
eral notable features, all in line with the quantum nature of these
transitions. Namely, the correlations 1) are much stronger (about
50 times larger) than those of the photons emitted through real
states, as shown in panel (a), 2) they have smaller correlation time
(and thus yield better time resolutions), 3) they do not depend
much on detuning, 4) they do not depend much on the choice of
configuration (degenerate bundles or not) and 5) they are sym-
metric in time. Note that symmetric correlations are not detri-
mental for heralding, as the instantaneous character of the emis-
sion allows to delay one channel and thus keep the other as the
heralding one. One obvious drawback of such strongly-correlated
emission is themuch reduced signal, since the collection ismade
away from the peaks. While there are ways to circumvent this
limitation, for instance by Purcell enhancing them with a cav-
ity of matching frequency,[35,43,44] we will remain here at the level
of describing the naked correlations. Now that we have shown
the new perspectives opened by the leapfrog process at the two-
photon level, we focus on more innovative aspects.

6. Sources of Heralded Bundles

The powerful dressed-atom picture allows a straightforward gen-
eralization of the heralding discussed in the previous Section.
One can contemplate the configuration where a photon heralds

Figure 4. (Color online). Filtered single-photon correlations from the
emission of, (a) the opposite sidebands, and, (b) the two-photon
leapfrogs. Panel (a) shows the exact behaviour at resonance (solid blue)
and with detuning (solid red), and compares it with the approximated ex-
pressions given in Ref. [26], shown as dashed blue and dashed red, re-
spectively. Panel (b) shows the filtered correlations from the same two-
photon leapfrog (shown in red at resonance and in green with detuning)
and from the leapfrogs at opposite sides of the central peak (shown in
orange at resonance and in blue with detuning). The curves essentially
overlap, meaning that, thanks to the nature of the leapfrog transitions, the
choice of configuration in which a two-photon bundle heralds another one
is not very important. The decay rate of the 2LS sets the unit,�+ = 300γσ ,
� = 5γσ and in the cases with detuning, ω̃σ = 200γσ .

a bundle in the radiative cascade down the ladder, as shown in
case i of Fig. 5(c). This is the same idea as Ulhaq et al.’s herald-
ing a single-photon, but now heralding a bundle instead. Even
better, however, is to consider a three-photon leapfrog where all
photons are virtual, and use one of them to herald the other two,
a sketched in case i i . Conveniently, one can use the heralding
photon to have a different energy from the two other ones, that
can be degenerate. One needs a careful analysis, however, since
there is room for subtleties in a relaxation process that starts to
be complex. As an illustration, case i i , that has no real photons,
has in fact the same distribution of photon frequencies as case i ,
that transits via a real state. The difference is the initial and final
states, |−〉 → |+〉 ⇒ |−〉 and |+〉 →→→ |+〉. For this reason, case i i
turns out to be suppressed as a three-photon leapfrog process, as
revealed by the exact calculation. One needs instead to find a case
such as i i i that suffers no such interference with another relax-
ation in the ladder intersecting with a real state. A quantitative
analysis is thus required, and the theory of frequency-resolved
photon correlations[33] here again allows us to easily tackle this
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Figure 5. (Color online). Correlations between a single photon and a bundle of two photons. Panel (a) displays the full correlation spectrum g(2)1,2,�(ω̃1, ω̃2)
between a single photon with frequency ω̃2 and a bundle of two photons, each with frequency ω̃1. The antidiagonals of superbunching are shown in
Panel (b): the dashed lines correspond to the transitions ω̃1 + ω̃2 = 	, whereas the solid lines correspond to the transitions 2ω̃1 + ω̃2 = 	. The latter
are shown in the ladder of Panel (c) as cases i–i i i , where the dark green arrows represent the two-photon bundles and the light green arrows the
single photon. Panel (d) shows the τ -dynamics along the blue antidiagonal of panel (b), while panel (e) shows the correlation intensities for all the solid
antidiagonals, with the same color code. Panels (f) and (g) show the time-correlationsmeasured at the frequencies specified by the red and orange filters.
Although the correlations in panel (g) have the λ-shape commonly associated to photon heralding, the correlations in panel (f) are much stronger. Note
that while the correlations captured by the orange filters, with the two-photon bundle emitted at ω̃1 = −�+/2, are bunched, they actually correspond to
a local minimum, as seen in panel (e) for the blue line. The global maximum, instead, lies at a frequency with no particular attribute that one would not
a priori target without the knowledge of the photon-bundle correlation spectrum. Its frequency is one captured by the red filters. The triplet splitting is
�+ = 300γσ , the detuning between the laser and the 2LS is ω̃σ = 200γσ and the spectral width of the sensors is � = 5γσ , except in panels (f) and (g),
where the filter size is specified for each curve.

problem. The relevant correlation is the one that generalizes
Eq. (9a) to the N-th order correlation function of N bundles, with
each of them—detected at frequency ω̃μ—being composed of nμ

photons:

g (N)n1,··· ,nN ,�(ω̃1, . . . , ω̃N) ≡ 〈: �N
μ=1ξ

†
μ

nμ (ω̃μ)ξ
nμ
μ (ω̃μ) :〉

�N
μ=1〈ξ †

μ

nμ
(ω̃μ)ξ

nμ
μ (ω̃μ)〉

, (10)

where “:” indicates normal ordering, a necessary requirement
when two (or more) of the sensors have the same frequency.
With this notation, Eq. (9a) is the particular case with N = 2
and n1 = n2 = 1. For the simplest extension to Ulhaq et al.’s

paradigm, that is, one photon heralding a two-photon bundle,
one therefore deals with

g (2)1,2,�(ω̃1, ω̃2) = 〈: ξ †
1 (ω̃1)ξ

†
2
2
(ω̃2)ξ 22 (ω̃2)ξ1(ω̃2) :〉

〈ξ †
1 (ω̃1)ξ1(ω̃1)〉〈ξ †

2
2
(ω̃2)ξ 22 (ω̃2)〉

. (11)

Figure 5(a) shows this quantity computed for the Mollow
triplet and, in (b), the mathematical structure of this photon-
bundle correlation spectrum. The “heralding scenario” of one
photon, of frequency ω̃2, announcing a two-photon bundle, made
of photons of frequency ω̃1, follows from Eq. (5) with N = 3 and
ω̃3 = ω̃1, resulting in correlations for g

(2)
1,2 when the condition

2ω̃1 + ω̃2 = 	 (12)
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is met, with, as before, 	 = 0 or ±�+. These yield the steeper
lines in Fig. 5(a), reproduced as solid lines in (b). They correspond
to transitions of the type i–i i i in the ladder of panel (c). The an-
tidiagonals, with the same strength than the three-photon bun-
dles, correspond to transitions of the type iv in panel (c), namely,
a two two-photon bundle cascade, transiting by an intermedi-
ate real state. Two photons from different leapfrogs can have the
same frequency, allowing for their detection as an apparent bun-
dle, although actually emanating from different bundles, related
by a cascade through a real state. In this case, any of the other pho-
ton can be detected as the heralder while the fourth photon is dis-
carded. Altough we have shown previously that correlations that
involve a real state are weaker than those that only involve virtual
states, this is when comparing processes of the same order, i.e.,
with the same number of photons. Here the two two-photon bun-
dle transition involves a cascade through a real state but is other-
wise composed of (two) second-order processes, while the three-
photon bundle that does not involve a real state, is a third-order
process. All this considered, the exact computation shows that
these processes result in correlations of similar strength in the
correlation spectrum, as seen in Fig. 5. This could be generalized
although the combinatorial explosion of different ways in which
N photons can be correlated at the same order would make such
a discussion difficult, and we believe that the three-photon case is
illustrative of the overall situation. Therefore, coming back to the
three-photon bundle, specified by Eq. (12), we show in Fig. 5(d)
the photon-bundle correlations g (2)1,2,�(τ ) along the leapfrog transi-
tions.We highlight the case |+〉 ⇒ |−〉 (blue line in panel (b)), the
results being similar for other leapfrogs. The density plot allows
to spot where the photon-bundle correlations are the strongest.
One sees, as expected, that correlations are smothered when in-
tersecting a real state, even exhibiting antibunching instead of
superbunching for the cases ω̃1/�+ = 0 (intersecting with the
central peak) and ω̃1/�+ = ±1/2 (leapfrogs). Since, by the na-
ture of the leapfrog correlations, they are fairly symmetric in
τ and maximum at zero, we can identify the optimum as the lo-
cal maximum nearby the peaks of g (2)1,2(ω̃1, (	 − ω̃1)/2), shown in
Fig. 5(e). It lies in good approximation between the two deple-
tions in correlations already described. The correlations in time
there for various filter sizes are shown in panel (f), reproducing
in this photon-bundle scenario the same phenomenology as the
photon-photon correlations shown in Fig. 4(b). The oscillations
that are observed in time are due to the spectral width of the
sensors, which detects photon from transitions other than the
N-photon leapfrog, causing interferences. Such an oscillatory be-
haviour can be reduced either by turning to a triplet with a larger
splitting, inwhich the emission fromdifferent transitions are fur-
ther apart, or by using a smaller filter width. The photon-bundle
correlations display strikingly the same phenomenology as the
photon-photon case of Fig. 4. Namely, they are completely sym-
metric in time, regardless of the size of the bundle, i.e., the cas-
cade emission of N-photon bundles from opposite sides of the
Mollow triplet does not have a preferential order. The tempo-
ral symmetry can be broken by involving a real transition and
detuning the laser from the 2LS. To complete the analogy with
Fig. 4, we also show in panel (g) the transition that involves a real
state transition for the photon heralding the bundle. In this case,
the correlation profile shown in (g) is obtained, in clear analogy

Figure 6. (Color online). Correlations involving four photons. (a)
Landscape of correlations between two-photon bundles as given by
g (2)2,2,�(ω̃1, ω̃2). (b) Mathematical structure of the correlations with tran-
sitions ω̃1 + ω̃2 = 	 (shown as dotted blue lines), ω̃1 + 2ω̃2 = 	 and
2ω̃1 + ω̃2 = 	 (dashed purple), and 2ω̃1 + 2ω̃2 = 	 (solid red), where
	 = −�+, 0,�+. (c) Correlations between a three-photon bundle, in
which each photon has frequency ω̃1, and a single photon with fre-
quency ω̃2. (d) Mathematical structure of the correlations with transitions
3ω̃1 + ω̃2 = 	 (shown in solid green) and the transitions described in (b).
The decay rate of the 2LS sets the unit, �+ = 300γσ , ω̃σ = 200γσ and
� = 5γσ .

of Fig. 4(a). So one has these two options of heralding a bundle
with a photon, would one scenario be better suited than the other.
The Mollow triplet can thus be turned into a tuneable and versa-
tile source of N-photon bundles simply by filtering its emission
at the adequate spectral windows.
This physics can be generalized, in principle, to any higher

order. Of course, an actual experiment measuring such correla-
tions would be increasingly challenging. Still, for the sake of il-
lustration, we now quickly address the case of four-photon bun-
dles (and parenthetically the general case of N-photon bundles).
The leapfrog are then hyperplanes of dimension 3 (N) in an hy-
perspace of dimension 4 (N + 1), which we shall not attempt to
represent. Instead, we show the two-bundle correlation spectra,
in Fig. 6. When correlating two bundles of two-photons each, we
recover a landscape fairly similar to that of Fig. 1. When correlat-
ing a photon with the rest of the bundle, we turn to the heralding
scenario. The number of possibilities is that given by the integer
partition of 3 (N), which is conveniently represented as Young
tableaux, whose number of rows is the order of the correlation,
and with each entry providing the composition of the correlated
bundles:
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1. for g (4)1,1,1,1, the standard Glauber correlator g
(4),

2. for g (2)2,2, shown in Fig. 6(a),

3. for g (2)1,3, shown in Fig. 6(b),

4. for g (3)1,1,2.

The non-partitioned case does not lead to a correlator
(it could be understood as normal luminescence). Maybe the

most useful configuration is · · · , with a single photon
heralding a N-photon bundle. The case of one photon herald-
ing a 3-photon bundle lies on any of the corresponding leapfrogs
shown as the steepest lines in Fig. 6(b), with general equation
Nω̃1 + ω̃2 = 	 (the case N = 3 is the one shown in the figure).
While it might be less obvious that other configurations could
also be useful, it would not be surprising on the other hand that
the need could arise with the boom of quantum technologies.
It seems that, in such a case, the Mollow triplet can serve as a
universal photon-emitter, able to deliver any requested configu-
ration, e.g., distributing ten photons in a five channel input with
two single photons, two two-photon bundles and a four-photon
bundle:

(13)

Would such a profile be required to feed a quantum gate, it is a
small technical matter to identify which spectral windows would
capture this configuration and filter it out from the total lumi-
nescence. Once again, here we do not address specifically the
issue of the signal, but only point to the structure of the pho-
ton correlations that reside in the Mollow triplet. We highlight as
well that, in addition to feeding boson sampling devices, the very
combinatorial nature of the emission could allow to test quan-
tum supremacy through photon detection only, without the need
of interposing a complex Galton board of optical beam-splitters.
Whatever its actual use for practical applications, it is clear that
the Mollow triplet overflows with possibilities, so characteristic
of strongly-correlated quantum emission.

7. Conclusions and Perspectives

We have shown that theMollow triplet is a treasure trove of quan-
tum correlations, at all orders and not limited to dressed-state
transitions. Specifically, we have shown—based on both qualita-
tive arguments rooted in the structure of the dressed-atom lad-
der and exact computations made possible by a recent theory
of frequency-resolved N-photon correlations—that the emission
from theMollow triplet exhibits its richest potential when dealing
with leapfrog transitions, i.e., processes that occur through vir-
tual photons, endowing them with much stronger correlations.
While the focus of photon correlations from theMollow triplet

has been on correlations between two photons from the peaks,
following the picture of a radiative cascade between dressed

states, our results should encourage the study of correlations
from photons away from the spectral peaks, where the emis-
sion from a Mollow triplet at the appropriate frequencies can be
used as a heralded source of N-photon bundles or, taking full ad-
vantage of the scheme, any customisable configuration of pho-
tons. At an applied level, including with the use of cavities to
Purcell enhance these transitions and turn the virtual processes
into real ones, this should allow to develop new types of quan-
tum emitters, of interest for instance for multiphoton quantum
spectroscopy,[45] or to deepen the tests of nonlocality and quan-
tum interferences between correlated photons.[40] Our result only
scratches the surface of the possibilities that reside in theMollow
triplet, which should be of interest as programmable quantum
inputs for future photonic applications.
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