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Abstract
We study theoretically the properties of a three-photon state prepared inside a semiconductor
cavity, due to the interaction between a quantum dot and an electromagnetic field, and two
consecutive spontaneous parametric downconversion (SPDC) processes. Thus, we consider a
scheme involving three modes of the electromagnetic field, whose frequencies are given by the
SPDC processes: ω0 → ω1 + ω2 and ω2 → ω1 + ω1. Furthermore, we study the low excitation
regime in which a three-photon state is accessible within the system’s dynamics.

Keywords: three-photon state, nonlinear cavity, quantum dot,
spontaneous parametric downconversion process, photonic crystal
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1. Introduction

During the last few years, several research groups have
been studying the light–matter interaction in quantum
dots (QDs) embedded in semiconductor microcavities,
both experimentally [1–6] and theoretically [7–15]. Such
investigations led to a new phenomenology which in turn has
led to technological applications [16–21].

On the other hand, the generation of photon n-plets
has been an interesting research branch, because it could
allow researchers to prepare quantum states inside cavities
which would be useful in quantum communication [22]. In
particular, three-photon states can be obtained experimentally
using spontaneous parametric downconversion (SPDC)
[23–28], and third-order optical nonlinearities in assembled
[29–31] systems. In this sense, although several groups
have managed to prepare and control specific quantum
states [32, 33], the preparation of arbitrary quantum states of
light is still an experimental challenge.

Bearing in mind the cavity quantum electrodynamics
(cQED) description of the light–matter interactions and the
preparation of quantum states of light via SPDC processes,
we consider that it is possible to set up an experimental design
in which the initial state inside a cavity can be prepared, and
finely controlled. Even though the cavity does not have to be
microscopic, the experimental design is scalable from those
of semiconductor microcavities. This means that the problem

and the obtained results are not restricted to the optical
region of the electromagnetic spectrum. Therefore, in order
to prepare the quantum state inside a cavity, a mesoscopic
nonlinear crystal can be included in the experimental design.
On the other hand, it has recently been demonstrated that
photonic crystal (PhC) cavities are capable of enhancing the
harmonic generation produced by either a χ (2) or a χ (3)

nonlinearity, which would finally yield an SPDC process
[34–37]. Furthermore, it has been shown that the adequate
geometry of the PhC [34], pump power [35] and whether the
cavity is singly or doubly resonant [36] may lead to a 100%
conversion.

In this sense, we consider a semiconductor cavity in
which there are a QD and two nonlinear crystals. The former
is coupled to a ω0 electromagnetic mode, so the cavity is filled
with ω0 photons. Afterwards, these photons go through the
nonlinear crystals and two SPDC processes take place: ω0 →

ω1 + ω2 and ω2 → ω1 + ω1. Taking into account an exciton
pumping and ω0 photon leakage from the cavity, which are
both incoherent processes, a three-photon state is accessible
in the ω1 electromagnetic mode.

The nonlinear cavity–QD system can be constructed
using a GaAs substrate, over which several layers of
Alx Ga1−x As, and a layer of AlyIn1−yAs in which the QDs are
localized, are grown using the molecular beam epitaxy (MBE)
method. In this particular construction, the optical properties
are nonlinear [37, 38], and could therefore be used as a basis
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Figure 1. Diagram of the physical system. The nonlinear crystals (ζ and ξ ) yield the SPDC processes.
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Figure 2. Ladder of energy levels for the QD–cavity system accessible from the |g, n0, n1, n2〉 state by just one process. The energy levels
are depicted by straight continuous lines corresponding to quantum states. The blue double lines correspond to the interaction between the
QD and the ω0 mode. The black (red) double lines connect the accessible states via the SPDC process associated with ζ (ξ ). The continuous
black lines describe the ω0 leakage process, whereas the green piecewise line corresponds to the incoherent exciton pumping.

for the experimental design of our system. Other such systems
consist of PhC made of periodically poled lithium niobate
(PPLN) [28, 39] or periodically poled potassium titanyl
phosphate (KTP) [40], which give rise to an enhancement of
the harmonic generation.

A possible drawback of this kind of experimental design
lies in the fact that the inclusion of QD into nonlinear
cavities yield physical phenomena such as the Kerr effect (due
to the presence of other QDs in the cavity), the harmonic
generation or the Purcell effect (due to the spontaneous
emission from a dipole source). Nevertheless, it has been
shown that PhC cavities can lead to an enhancement of
the nonlinear phenomena and suppress the spontaneous
emission via a photonic bang gap, which increases the
χ (3) nonlinearity [35]. Furthermore, the SPDC processes
can achieve 100% efficiency by using a doubly resonant
cavity [36], but producing such cavities is a challenge
because they require confinement at two very different
frequencies [35].

The rest of the paper is organized as follows. In section 2,
we present the model. In section 3, we present our results and
discuss their consequences. Finally, in section 4 we provide
an overview of the results and conclude.

2. Model

Our model considers the interaction between a QD and
an electromagnetic mode inside a semiconductor cavity,
followed by two consecutive SPDC processes. The latter
lead to a total of three electromagnetic modes. The
QD’s elementary excitations—excitons—are the result of an
electron being promoted to the conduction from the valence
band. In this paper, we model the interaction between
the excitons and an electromagnetic mode with the usual
Jaynes–Cummings model [41, 42], whose Hamiltonian is the
following (h̄ is taken as 1 throughout the paper):

HJC = ω0a†
0a0 + ωqdσ

†σ + g
(

a†
0σ + a0σ

†
)

, (1)

where a0(a
†
0) is the ω0 electromagnetic mode annihilation

(creation) operator and σ(σ †) is the exciton annihilation
(creation) operator. The ω0 electromagnetic mode and the
QD’s exciton are coupled with an interaction strength g and
their frequencies are close enough to resonance to allow
for the rotating wave approximation, i.e. 1 = ω0 − ωqd �

ω0, ωqd [43].
The two subsequent SPDC processes generate two more

electromagnetic modes with frequencies ω1 and ω2. In the
first process, one ω0 photon generates one ω1 and one ω2

photon (ω0 → ω1 + ω2), whereas in the second process one
ω2 generates two ω1 photons (ω2 → ω1 + ω1). Both processes
may be described in an effective way with the following
Hamiltonian [30]:

HSPDC = ζ
(

a0a†
1a†

2 + a†
0a1a2

)
+ ξ

(
a†2

1 a2 + a2
1a†

2

)
, (2)

where ζ and ξ are the rates at which the processes occur and
ai (a

†
i ) are the ωi mode annihilation (creation) operators. The

physical system is depicted in figure 1 and is described by the
Jaynes–Cummings plus SPDC Hamiltonians,

H = HJC + HSPDC. (3)

The dynamical behavior and the incoherent pumping and loss
of the dot–cavity system are included in the master equation,
which in the Lindblad notation is written as

ρ̇=i [ρ, H ]+
P

2

(
2σ †ρσ−{σσ †, ρ}

)
+

κ

2

(
2a0ρa†

0−{a†
0a0, ρ}

)
,

(4)

where H is the Hamiltonian given in equation (3), κ is the rate
at which ω0 photons escape from the cavity and P is the rate
at which the excitation is pumped to the cavity and is linked
to the rate at which electron–hole pairs relax into the dot.

Furthermore, the system’s energy levels and its
connection via the master equation given in equation (4)
are shown schematically in figure 2. Each energy level is

2
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Figure 3. Photon number distribution (first row), Wigner functions (second row) and its contour plots (third row) for the ω1 mode for three
different time intervals. The parameters used are g/κ = 50, ζ/κ = 30, ξ/κ = 10, κ/P = 1000, ω0 = ωqd = 500 meV and g = 5 meV.

associated with a quantum state written as |a, i, j, k〉, where
a is the QD state (either ground or excited) and i , j and k
are the photon numbers in the ω0, ω1 and ω2 modes of the
electromagnetic field, respectively. The presented scheme
shows the energy levels accessible for the |g, n0, n1, n2〉 state
by just one process.

3. Results

We solved the master equation given in (4) numerically using
the following parameter values: the dipole-like interaction
constant between the QD and the ω0 mode is set as g =

5 meV; the excitation energy of the QD is set as ωqd =

500 meV which in turn is tuned perfectly with the ω0 mode,
i.e. ωqd = ω0. These values are usual for λ cavities operating
in the infrared region of the electromagnetic spectrum.
Furthermore, restricting our results to the low-excitation
regime, we set the incoherent pumping rate P as 0.1 µ eV,
whereas the cavity loss for the fundamental mode ω0

is taken as κ = 0.1 meV. On the other hand, the SPDC
rates are taken as ξ = 1 meV and ζ = 3 meV, following the
recommendations presented in [30].

We consider the QD in its excited state and the
electromagnetic field to be in a vacuum state in all of its
modes, as the system’s initial condition. With this setup, we
observe that the state of the ω1 electromagnetic mode reaches
a so-called three-photon state, which is a superposition of
3n-photon Fock states, within the system’s dynamics. These
results are shown in figure 3.

In this way, we have obtained results similar to
those presented in [30], considering explicitly the

interaction between a QD in a semiconductor cavity and
an electromagnetic field. These results are very interesting,
since we have shown that a three-photon state can be prepared
inside a semiconductor cavity made of PhC capable of
enhancing the harmonic generation produced by either a χ (2)

or χ (3) nonlinearity.

4. Summary and conclusions

In this paper, we have studied theoretically the preparation of a
three-photon state inside a semiconductor cavity made of PhC
capable of enhancing the harmonic generation produced by
either a χ (2) or χ (3) nonlinearity. The three-photon state is the
result of the interaction between a QD embedded in the cavity
and a ω0 mode of the electromagnetic field, and two SPDC
processes yielding two more modes of the electromagnetic
field: ω0 → ω1 + ω2 and ω2 → ω1 + ω1. To study the system’s
dynamics we have solved a Lindblad master equation
numerically considering both an incoherent excitation pump
rate and ω0-photon leakage from the cavity. In this way, we
observed that the three-photon state is accessible within the
dynamics in the ω1 mode in a low-excitation regime.
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Appendix. Dynamics of the density operator’s
matrix elements

On the basis {|g, n0, n1, n2〉; |e, n0, n1, n2〉} of product states
between the QD and the ω0, ω1 and ω2 electromagnetic
modes, the matrix elements of the density operator are

ρa,i, j,k;b,l,m,n = 〈a, i, j, k|ρ|b, l, m, n〉, (A.1)

where a and b are either g or e.
In this notation, the density operator’s matrix elements

satisfy the following differential equations:

∂tρg,i, j,k;g,l,m,n =

[
i ω0

(
l − i +

m− j

3
+ 2

n−k

3

)
− κ

l + i

2
− P

]
× ρg,i, j,k;g,l,m,n

+ i g
(√

lρg,i, j,k;e,l−1,m,n−
√

iρe,i−1, j,k;g,l,m,n

)
+ κ

√
(i + 1)(l + 1)ρg,i+1, j,k;g,l+1,m,n

+ i ζ
(√

l(m + 1)(n + 1)ρg,i, j,k;g,l−1,m+1,n+1

+
√

(l − 1)mnρg,i, j,k;g,l+1,m−1,n−1

)
− i ζ

(√
(i + 1) jkρg,i+1, j−1,k−1;g,l,m,n

+
√

i( j + 1)(k + 1)ρg,i−1, j+1,k+1;g,l,m,n

)
+ i ξ

(√
m(m − 1)(n + 1)ρg,i, j,k;g,l,m−2,n+1

+
√

(m + 1)(m + 2)nρg,i, j,k;g,l,m+2,n−1

)
− i ξ

(√
( j + 1)( j + 2)kρg,i, j+2,k−1;g,l,m,n

+
√

j ( j − 1)(k + 1)ρg,i, j−2,k+1;g,l,m,n

)
,

(A.2)

∂tρe,i, j,k;e,l,m,n =

[
i ω0

(
l − i +

m − j

3
+ 2

n − k

3

)
− κ

l + i

2

]
×ρe,i, j,k;e,l,m,n + Pρg,i, j,k;g,l,m,n

+i g
(√

l + 1ρe,i, j,k;g,l+1,m,n −
√

i + 1ρg,i+1, j,k;e,l,m,n

)
+κ

√
(i + 1)(l + 1)ρe,i+1, j,k;e,l+1,m,n

+i ζ
(√

l(m + 1)(n + 1)ρe,i, j,k;e,l−1,m+1,n+1

+
√

(l − 1)mnρe,i, j,k;e,l+1,m−1,n−1

)
−i ζ

(√
(i + 1) jkρe,i+1, j−1,k−1;e,l,m,n

+
√

i( j + 1)(k + 1)ρe,i−1, j+1,k+1;e,l,m,n

)
+i ξ

(√
m(m − 1)(n + 1)ρe,i, j,k;e,l,m−2,n+1

+
√

(m + 1)(m + 2)nρe,i, j,k;e,l,m+2,n−1

)

−i ξ
(√

( j + 1)( j + 2)kρe,i, j+2,k−1;e,l,m,n

+
√

j ( j − 1)(k + 1)ρe,i, j−2,k+1;e,l,m,n

)
, (A.3)

∂tρg,i, j,k;e,l,m,n =

[
i ω0

(
l − i +

m − j

3
+ 2

n − k

3

)
+i ωqd − κ

l + i

2
−

P

2

]
ρg,i, j,k;e,l,m,n

+i g
(√

l+1ρg,i, j,k;g,l+1,m,n−
√

iρe,i−1, j,k;e,l,m,n

)
+ κ

√
(i + 1)(l + 1)ρg,i+1, j,k;e,l+1,m,n

+ i ζ
(√

l(m + 1)(n + 1)ρg,i, j,k;e,l−1,m+1,n+1

+
√

(l − 1)mnρg,i, j,k;e,l+1,m−1,n−1

)
− i ζ

(√
(i + 1) jkρg,i+1, j−1,k−1;e,l,m,n

+
√

i( j + 1)(k + 1)ρg,i−1, j+1,k+1;e,l,m,n

)
+ i ξ

(√
m(m − 1)(n + 1)ρg,i, j,k;e,l,m−2,n+1

+
√

(m + 1)(m + 2)nρg,i, j,k;e,l,m+2,n−1

)
− i ξ

(√
( j + 1)( j + 2)kρg,i, j+2,k−1;e,l,m,n

+
√

j ( j − 1)(k + 1)ρg,i, j−2,k+1;e,l,m,n

)
,

(A.4)

plus the Hermitian conjugate of (A.4).
Once the system of linear equations is solved, we obtain

the density operator of the cavity–QD system as a function
of time: ρ(t). This operator has four quantum numbers
associated, one to the QD and one to each of the modes of
the electromagnetic field, and its matrix elements are thus
given by

ρa,i, j,k;b,l,m,n(t) = 〈a, i, j, k|ρ(t)|b, l, m, n〉. (A.5)

Nevertheless, in this particular case we are only interested
in the degree of freedom associated with the ω1 mode, so it
is convenient to consider the reduced (to the ω1 subsystem)
density operator instead of the complete operator. The reduced
operator is denoted as ρ(3)(t), and is obtained from the
complete operator by performing partial trace over all the
remaining degrees of freedom:

ρ
(3)
i, j (t) = 〈i |ρ(3)(t)| j〉 =

∑
a,n,m

〈a, n, i, m|ρ(t)|a, n, j, m〉.

(A.6)

Finally, once we have obtained the reduced density operator
for the ω1 mode, we compute its Wigner function as in
e.g. [44].
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